{ "policy_class": { ":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8ce103fe40>" }, "verbose": 0, "policy_kwargs": {}, "observation_space": { ":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [ 8 ], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null }, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678897216734099320, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": { ":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "_last_obs": null, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg==" }, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVOBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuHU3T3UcbkCUhpRSlIwBbJRNAAGMAXSUR0CYxpEcsDnvdX2UKGgGaAloD0MIyjfb3FjKc0CUhpRSlGgVS95oFkdAmMaSKWLP2XV9lChoBmgJaA9DCIBgjh4/OGNAlIaUUpRoFU3oA2gWR0CYxzc6eXiSdX2UKGgGaAloD0MIl8RZETUeb0CUhpRSlGgVS+JoFkdAmMdlMEidKHV9lChoBmgJaA9DCNKMRdOZxHFAlIaUUpRoFU0KAWgWR0CYx4F7Uoa2dX2UKGgGaAloD0MIVrYPecsMcECUhpRSlGgVS+toFkdAmMecQ7LdN3V9lChoBmgJaA9DCHyakxcZFnFAlIaUUpRoFU0IAWgWR0CYx8IYWLxadX2UKGgGaAloD0MIB9Fa0aYxcUCUhpRSlGgVS+VoFkdAmMi5BcAzYXV9lChoBmgJaA9DCDi8ICI1825AlIaUUpRoFUvPaBZHQJjJMCJXQt11fZQoaAZoCWgPQwj7lGOyuHFwQJSGlFKUaBVL42gWR0CYyYtAcDKYdX2UKGgGaAloD0MIeA5lqIqab0CUhpRSlGgVTTYCaBZHQJjKEYNy5qd1fZQoaAZoCWgPQwgLYTWWMG1xQJSGlFKUaBVL3mgWR0CYyk3z+WGAdX2UKGgGaAloD0MIZeQs7CknckCUhpRSlGgVS/ZoFkdAmMsEB8x9HHV9lChoBmgJaA9DCAthNZawqm5AlIaUUpRoFUvZaBZHQJjLmXt0FKV1fZQoaAZoCWgPQwhPdF34wYduQJSGlFKUaBVL4WgWR0CYzDTbFjusdX2UKGgGaAloD0MIJv4o6sw+cUCUhpRSlGgVS89oFkdAmMy2ZE2HcnV9lChoBmgJaA9DCElNu5imgnJAlIaUUpRoFUvpaBZHQJjNU01qFh51fZQoaAZoCWgPQwjRd7eyRHJwQJSGlFKUaBVL92gWR0CYzYMyrPt2dX2UKGgGaAloD0MIxw2/m65tcUCUhpRSlGgVTRMBaBZHQJjNns1KoQ51fZQoaAZoCWgPQwiSeeQPBnBtQJSGlFKUaBVL52gWR0CYzacZ9/jLdX2UKGgGaAloD0MIAaYMHBCmckCUhpRSlGgVTR0BaBZHQJjNv2HtWuJ1fZQoaAZoCWgPQwhnmNpSB91xQJSGlFKUaBVNBwFoFkdAmM4+mR/3FnV9lChoBmgJaA9DCCzwFd06p3BAlIaUUpRoFUvkaBZHQJjO6fg75mB1fZQoaAZoCWgPQwiAYfnzrY1wQJSGlFKUaBVL+WgWR0CYz8cYZVGTdX2UKGgGaAloD0MI6lp7n2racECUhpRSlGgVTR8BaBZHQJjP4+7lJYl1fZQoaAZoCWgPQwgukKD48UNyQJSGlFKUaBVL7WgWR0CY0A+DOC5FdX2UKGgGaAloD0MIjDGwjmNFckCUhpRSlGgVTbcCaBZHQJjQkTN+so51fZQoaAZoCWgPQwj2tMNf019xQJSGlFKUaBVL3WgWR0CY0JfGuLaVdX2UKGgGaAloD0MIQnxgxz8LckCUhpRSlGgVS/toFkdAmNCeXNTtLXV9lChoBmgJaA9DCGACt+4mKXFAlIaUUpRoFUv4aBZHQJjSQhdMTOB1fZQoaAZoCWgPQwgTZtr+lctPQJSGlFKUaBVL3mgWR0CY0qLh73PBdX2UKGgGaAloD0MI3j6rzFS8cECUhpRSlGgVS/ZoFkdAmNK1WS2Yv3V9lChoBmgJaA9DCAKAY88eZW9AlIaUUpRoFUvhaBZHQJjTAsFt8/l1fZQoaAZoCWgPQwhQAMXI0jJwQJSGlFKUaBVL72gWR0CY00jpcHGCdX2UKGgGaAloD0MIE7ngDL5wcUCUhpRSlGgVS/poFkdAmNO3BciW3XV9lChoBmgJaA9DCJuuJ7rujnJAlIaUUpRoFUv7aBZHQJjT2VAzHjp1fZQoaAZoCWgPQwj3yycrhixwQJSGlFKUaBVL92gWR0CY1FvmozeodX2UKGgGaAloD0MI7NlzmdpPckCUhpRSlGgVS/toFkdAmNU96X0GvHV9lChoBmgJaA9DCNB7YwiA5m5AlIaUUpRoFUvkaBZHQJjWFpxm03R1fZQoaAZoCWgPQwhlVYSbjF9yQJSGlFKUaBVL32gWR0CY1tXDWK/EdX2UKGgGaAloD0MIIXTQJVwgckCUhpRSlGgVTQMBaBZHQJjXCsaKk2x1fZQoaAZoCWgPQwjc9dIUAThzQJSGlFKUaBVNAgFoFkdAmNg6TwDvE3V9lChoBmgJaA9DCHcP0H25dnBAlIaUUpRoFU0BAWgWR0CY2EyWiUPhdX2UKGgGaAloD0MIWMhcGVRDckCUhpRSlGgVS9xoFkdAmNrIXwb2lHV9lChoBmgJaA9DCBDPEmRENXFAlIaUUpRoFUv5aBZHQJja4EOiFkB1fZQoaAZoCWgPQwi2MXbCC5NxQJSGlFKUaBVL8mgWR0CY2yPgNwzddX2UKGgGaAloD0MI3rBtUeaocUCUhpRSlGgVS9xoFkdAmNvWFBY3enV9lChoBmgJaA9DCIif/x48rXBAlIaUUpRoFUvzaBZHQJjcGyyD7Il1fZQoaAZoCWgPQwiSzyue+mJyQJSGlFKUaBVNEAFoFkdAmNxxLPD503V9lChoBmgJaA9DCENwXMbNL25AlIaUUpRoFUvqaBZHQJjcme05U991fZQoaAZoCWgPQwghkiHH1gNxQJSGlFKUaBVNtwFoFkdAmN5AvpQk5nV9lChoBmgJaA9DCD86deVzW3NAlIaUUpRoFUvnaBZHQJjeg/hVENR1fZQoaAZoCWgPQwju68A5I61wQJSGlFKUaBVNCQFoFkdAmN6KsZHd43V9lChoBmgJaA9DCFmnyveMk3FAlIaUUpRoFUvzaBZHQJjfz3SKFZh1fZQoaAZoCWgPQwgJpwUvOl1xQJSGlFKUaBVL7GgWR0CY4Eh2nsLOdX2UKGgGaAloD0MITiuFQC7gcUCUhpRSlGgVS+loFkdAmOBh8QZn+XV9lChoBmgJaA9DCMMtH0nJ8G1AlIaUUpRoFUvsaBZHQJjhsQxvegt1fZQoaAZoCWgPQwhMpgpGpc9xQJSGlFKUaBVLxWgWR0CY482BreqJdX2UKGgGaAloD0MIGqa21IHbcUCUhpRSlGgVS+doFkdAmOQn+Q2dd3V9lChoBmgJaA9DCJ6WH7hKnm5AlIaUUpRoFUvuaBZHQJjkpC9h7Vt1fZQoaAZoCWgPQwi6aTNOA65wQJSGlFKUaBVL8WgWR0CY5RkX1rZbdX2UKGgGaAloD0MIZQETuHVLbUCUhpRSlGgVS+BoFkdAmOXCSNfgJnV9lChoBmgJaA9DCPzDlh4N5XBAlIaUUpRoFUvuaBZHQJjmBTMqz7d1fZQoaAZoCWgPQwiAt0CC4kxuQJSGlFKUaBVL5mgWR0CY5jB0IToMdX2UKGgGaAloD0MITYbj+YyubkCUhpRSlGgVTV8BaBZHQJjmy56MR6F1fZQoaAZoCWgPQwg2A1yQ7ctwQJSGlFKUaBVL3WgWR0CY54oNd7fIdX2UKGgGaAloD0MIW5nwS/33bUCUhpRSlGgVS9poFkdAmOezIBBAwHV9lChoBmgJaA9DCEpiSbl76W9AlIaUUpRoFUvdaBZHQJjn1mOEM9d1fZQoaAZoCWgPQwhyjGSP0LtxQJSGlFKUaBVL5GgWR0CY6cf3evZAdX2UKGgGaAloD0MIONkG7kC8cECUhpRSlGgVS+ZoFkdAmOnnyup0fnV9lChoBmgJaA9DCNsUj4uqXHFAlIaUUpRoFUvcaBZHQJjqdMuez2R1fZQoaAZoCWgPQwjRyyiWm8ByQJSGlFKUaBVNEgFoFkdAmOqnvDxb0XV9lChoBmgJaA9DCNBE2PD0eW9AlIaUUpRoFUvgaBZHQJjsQUHpr1x1fZQoaAZoCWgPQwi14bA08E9fQJSGlFKUaBVN6ANoFkdAmO0KSX+l03V9lChoBmgJaA9DCAPRkzIpuHBAlIaUUpRoFU0PAWgWR0CY7V9Htnf3dX2UKGgGaAloD0MIprVpbK8nb0CUhpRSlGgVS+NoFkdAmO2ZkK/mDHV9lChoBmgJaA9DCO/nFORnSXFAlIaUUpRoFUvyaBZHQJjtu6nR9gF1fZQoaAZoCWgPQwgVWABTBghyQJSGlFKUaBVNBQFoFkdAmO3UQK8cuXV9lChoBmgJaA9DCCoaa3+naHFAlIaUUpRoFUvUaBZHQJjuM7GNrCZ1fZQoaAZoCWgPQwi94NOcvHlyQJSGlFKUaBVNDwFoFkdAmO6lCHARCnV9lChoBmgJaA9DCLMngc05gW5AlIaUUpRoFUvlaBZHQJjuu9nK4hF1fZQoaAZoCWgPQwjVz5uKFBpxQJSGlFKUaBVNCAFoFkdAmO7zqKP4mHV9lChoBmgJaA9DCFk0nZ1MoHFAlIaUUpRoFUvqaBZHQJjwPo/zJ6p1fZQoaAZoCWgPQwiP39v0J51xQJSGlFKUaBVNLwFoFkdAmPBb4i5d4XV9lChoBmgJaA9DCFAcQL8voXJAlIaUUpRoFUv6aBZHQJjwi2UjcEh1fZQoaAZoCWgPQwiRe7q6Y+FtQJSGlFKUaBVL32gWR0CY8Ix2St/4dX2UKGgGaAloD0MIPnjt0oZvckCUhpRSlGgVS/1oFkdAmPF1NpM6BHV9lChoBmgJaA9DCG6JXHBGgnJAlIaUUpRoFUvkaBZHQJjyR3PiT+x1fZQoaAZoCWgPQwj/P06YMF1wQJSGlFKUaBVL52gWR0CY8y2dd3SsdX2UKGgGaAloD0MInZyhuGP2bECUhpRSlGgVS+doFkdAmPOlhb4agnV9lChoBmgJaA9DCOJ30y175nJAlIaUUpRoFU0EAWgWR0CY87dMj/uLdX2UKGgGaAloD0MIHLYtyiykcUCUhpRSlGgVS9NoFkdAmPQRc7hegXV9lChoBmgJaA9DCCe+2lFcSnFAlIaUUpRoFU0DAWgWR0CY9DZXMhX9dX2UKGgGaAloD0MIGqchqrBVcUCUhpRSlGgVS/NoFkdAmPTiJoCdSXV9lChoBmgJaA9DCA9+4gB66m9AlIaUUpRoFUvsaBZHQJj1Bz/6wdN1fZQoaAZoCWgPQwgMkj6t4rFxQJSGlFKUaBVNDAFoFkdAmPUdFjNILHV9lChoBmgJaA9DCNBHGXHBQnJAlIaUUpRoFUvfaBZHQJj2HB9Cu2Z1fZQoaAZoCWgPQwgvM2yUtRRwQJSGlFKUaBVL2GgWR0CY9jbLEDQrdX2UKGgGaAloD0MIVtehmtIUcUCUhpRSlGgVS/JoFkdAmPayK3uuzXV9lChoBmgJaA9DCDf+RGVDYHBAlIaUUpRoFUv3aBZHQJj4HZ13dKx1ZS4=" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": { ":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null }