--- license: apache-2.0 language: - en library_name: open_clip tags: - clip - genshin-impact - game base_model: - laion/CLIP-ViT-B-16-laion2B-s34B-b88K --- # GenshinCLIP A simple and small-size open-sourced CLIP model fine-tuned on Genshin Impact's image-text pairs. Visit the [github](https://github.com/mrzjy/GenshinCLIP) for case study and data pair examples. The model is far from being perfect, but could still offer some better text-image matching performance in some Genshin Impact scenarios. | Model | Checkpoint Size | Val Loss | |:-------------------------------------------------------------------------------------------:|:-----------------:|:----------:| | [GenshinImpact-CLIP-ViT-B-16-laion2B-s34B-b88K](https://huggingface.co/mrzjy/GenshinImpact-CLIP-ViT-B-16-laion2B-s34B-b88K) | 0.59 GB | 1.152 | | [GenshinImpact-ViT-SO400M-14-SigLIP-384](https://huggingface.co/mrzjy/GenshinImpact-ViT-SO400M-14-SigLIP-384) | 3.51 GB | 0.362 | ## Intended uses & limitations You can use the raw model for tasks like zero-shot image classification and image-text retrieval. ### How to use (With OpenCLIP) Here is how to use this model to perform zero-shot image classification: ```python import torch import torch.nn.functional as F from PIL import Image import requests from open_clip import create_model_from_pretrained, get_tokenizer def preprocess_text(string): return "Genshin Impact\n" + string device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # load checkpoint from local path # model_path = "path/to/open_clip_pytorch_model.bin" # model_name = "ViT-B-16" # model, preprocess = create_model_from_pretrained(model_name=model_name, pretrained=model_path, device=device) # tokenizer = get_tokenizer(model_name) # or load from hub model, preprocess = create_model_from_pretrained('hf-hub:mrzjy/GenshinImpact-CLIP-ViT-B-16-laion2B-s34B-b88K') tokenizer = get_tokenizer('hf-hub:mrzjy/GenshinImpact-CLIP-ViT-B-16-laion2B-s34B-b88K') # image image_url = "https://static.wikia.nocookie.net/gensin-impact/images/3/33/Qingce_Village.png" image = Image.open(requests.get(image_url, stream=True).raw) image = preprocess(image).unsqueeze(0).to(device) # text choices labels = [ "This is an area of Liyue", "This is an area of Mondstadt", "This is an area of Sumeru", "This is Qingce Village" ] labels = [preprocess_text(l) for l in labels] text = tokenizer(labels, context_length=model.context_length).to(device) with torch.autocast(device_type=device.type): with torch.no_grad(): image_features = model.encode_image(image) text_features = model.encode_text(text) image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) print(text_probs) # [0.0319, 0.0062, 0.0012, 0.9608] ``` ## Model Card ### CLIP for GenshinImpact [CLIP-ViT-B-16-laion2B-s34B-b88K model](https://huggingface.co/laion/CLIP-ViT-B-16-laion2B-s34B-b88K) further fine-tuned on 17k Genshin Impact English text-image pairs at resolution 384x384. ### Training data description There're currently 17,428 (train) and 918 (validation) text-image pairs used for model training. All the images and texts are crawled from [Genshin Fandom Wiki](https://genshin-impact.fandom.com/wiki) and are manually parsed to form text-image pairs. **Image Processing:** - Size: Resize all images to 384x384 pixels to match the original model training settings. - Format: Accept images in PNG or GIF format. For GIFs, extract a random frame to create a static image for text-image pairs. **Text Processing:** - Source: Text can be from the simple caption attribute of an HTML `` tag or specified web content. - Format: Prepend all texts with "Genshin Impact" along with some simple template to form natural language sentences. **Data Distribution:** ![data_distribution.png](img%2Fdata_distribution.png) **Validation Loss Curve** ![loss_curve.png](img%2Floss_curve.png)