--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer base_model: sentence-transformers/distiluse-base-multilingual-cased-v2 metrics: - accuracy widget: - text: explain in detail what is FFT and the complexity of it - text: The p success of karger min cut after k steps - text: Giải thích sự khác biệt giữa mô hình học có giám sát và không giám sát. Cung cấp ví dụ cho từng loại. (ít nhất 150 từ) - text: 'Which of the following is a Code-Based Test Coverage Metrics(E. F. Miller, 1977 dissertation)? Câu hỏi 1Trả lời a. C1c: Every condition outcome b. MMCC: Multiple Module condition coverage c. Cx - Every "x" statement ("x" can be single, double, triple) d. C2: C0 coverage + loop coverage' - text: What is software testing? pipeline_tag: text-classification inference: true model-index: - name: SetFit with sentence-transformers/distiluse-base-multilingual-cased-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.5 name: Accuracy --- # SetFit with sentence-transformers/distiluse-base-multilingual-cased-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | | | 1 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.5 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("chibao24/model_routing_few_shot") # Run inference preds = model("What is software testing?") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 20.2903 | 115 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 16 | | 1 | 15 | ### Training Hyperparameters - batch_size: (4, 4) - num_epochs: (4, 4) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:-------:|:-------------:|:---------------:| | 0.0078 | 1 | 0.4319 | - | | 0.3906 | 50 | 0.1028 | - | | 0.7812 | 100 | 0.0021 | - | | **1.0** | **128** | **-** | **0.2328** | | 1.1719 | 150 | 0.0002 | - | | 1.5625 | 200 | 0.0 | - | | 1.9531 | 250 | 0.0001 | - | | 2.0 | 256 | - | 0.3315 | | 2.3438 | 300 | 0.0 | - | | 2.7344 | 350 | 0.0002 | - | | 3.0 | 384 | - | 0.2364 | | 3.125 | 400 | 0.0001 | - | | 3.5156 | 450 | 0.0 | - | | 3.9062 | 500 | 0.0001 | - | | 4.0 | 512 | - | 0.3333 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.1.2+cu121 - Datasets: 2.19.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```