--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer base_model: sentence-transformers/distiluse-base-multilingual-cased-v2 metrics: - accuracy widget: - text: explain in detail what is FFT and the complexity of it - text: The p success of karger min cut after k steps - text: Giải thích sự khác biệt giữa mô hình học có giám sát và không giám sát. Cung cấp ví dụ cho từng loại. (ít nhất 150 từ) - text: 'Which of the following is a Code-Based Test Coverage Metrics(E. F. Miller, 1977 dissertation)? Câu hỏi 1Trả lời a. C1c: Every condition outcome b. MMCC: Multiple Module condition coverage c. Cx - Every "x" statement ("x" can be single, double, triple) d. C2: C0 coverage + loop coverage' - text: What is software testing? pipeline_tag: text-classification inference: true model-index: - name: SetFit with sentence-transformers/distiluse-base-multilingual-cased-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.5 name: Accuracy --- # SetFit with sentence-transformers/distiluse-base-multilingual-cased-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 |