Back to all models
question-answering mask_token: <mask>
Query this model
πŸ”₯ This model is currently loaded and running on the Inference API. ⚠️ This model could not be loaded by the inference API. ⚠️ This model can be loaded on the Inference API on-demand.
JSON Output
API endpoint  

⚑️ Upgrade your account to access the Inference API

Share Copied link to clipboard

Monthly model downloads

mrm8488/umberto-wikipedia-uncased-v1-finetuned-squadv1-it mrm8488/umberto-wikipedia-uncased-v1-finetuned-squadv1-it
last 30 days



Contributed by

mrm8488 Manuel Romero
155 models

How to use this model directly from the πŸ€—/transformers library:

Copy to clipboard
from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("mrm8488/umberto-wikipedia-uncased-v1-finetuned-squadv1-it") model = AutoModelForQuestionAnswering.from_pretrained("mrm8488/umberto-wikipedia-uncased-v1-finetuned-squadv1-it")

UmBERTo Wikipedia Uncased + italian SQuAD v1 πŸ“š 🧐 ❓

UmBERTo-Wikipedia-Uncased fine-tuned on Italian SQUAD v1 dataset for Q&A downstream task.

Details of the downstream task (Q&A) - Model 🧠

UmBERTo is a Roberta-based Language Model trained on large Italian Corpora and uses two innovative approaches: SentencePiece and Whole Word Masking. UmBERTo-Wikipedia-Uncased Training is trained on a relative small corpus (~7GB) extracted from Wikipedia-ITA.

Details of the downstream task (Q&A) - Dataset πŸ“š

SQuAD [Rajpurkar et al. 2016] is a large scale dataset for training of question answering systems on factoid questions. It contains more than 100,000 question-answer pairs about passages from 536 articles chosen from various domains of Wikipedia.

SQuAD-it is derived from the SQuAD dataset and it is obtained through semi-automatic translation of the SQuAD dataset into Italian. It represents a large-scale dataset for open question answering processes on factoid questions in Italian. The dataset contains more than 60,000 question/answer pairs derived from the original English dataset.

Model training πŸ‹οΈβ€

The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command:

python transformers/examples/question-answering/ \
  --model_type bert \
  --model_name_or_path 'Musixmatch/umberto-wikipedia-uncased-v1' \
  --do_eval \
  --do_train \
  --do_lower_case \
  --train_file '/content/dataset/SQuAD_it-train.json' \
  --predict_file '/content/dataset/SQuAD_it-test.json' \
  --per_gpu_train_batch_size 16 \
  --learning_rate 3e-5 \
  --num_train_epochs 10 \
  --max_seq_length 384 \
  --doc_stride 128 \
  --output_dir /content/drive/My\ Drive/umberto-uncased-finetuned-squadv1-it \
  --overwrite_output_dir \
  --save_steps 1000

With 10 epochs the model overfits the train dataset so I evaluated the different checkpoints created during training (every 1000 steps) and chose the best (In this case the one created at 17000 steps).

Test set Results 🧾

Metric # Value
EM 60.50
F1 72.41
'exact': 60.50729399395453,
'f1': 72.4141113348361,
'total': 7609,
'HasAns_exact': 60.50729399395453,
'HasAns_f1': 72.4141113348361,
'HasAns_total': 7609,
'best_exact': 60.50729399395453,
'best_exact_thresh': 0.0,
'best_f1': 72.4141113348361,
'best_f1_thresh': 0.0

Comparison βš–οΈ

Model EM F1 score
DrQA-it trained on SQuAD-it 56.1 65.9
This one 60.50 72.41
bert-italian-finedtuned-squadv1-it-alfa 62.51 74.16

Model in action πŸš€

Fast usage with pipelines:

from transformers import pipeline

QnA_pipeline = pipeline('question-answering', model='mrm8488/umberto-wikipedia-uncased-v1-finetuned-squadv1-it')

    'context': 'Marco Aurelio era un imperatore romano che praticava lo stoicismo come filosofia di vita .',
    'question': 'Quale filosofia seguì Marco Aurelio ?'
# Output:
{'answer': 'stoicismo', 'end': 65, 'score': 0.9477770241566028, 'start': 56}

Created by Manuel Romero/@mrm8488 | LinkedIn Made with in Spain