--- language: es tags: - QA - Q&A datasets: - BSC-TeMU/SQAC widget: - text: "question: ¿Cuál es el nombre que se le da a la unidad morfológica y funcional de los seres vivos? context: La célula (del latín cellula, diminutivo de cella, ‘celda’) es la unidad morfológica y funcional de todo ser vivo. De hecho, la célula es el elemento de menor tamaño que puede considerarse vivo.\u200b De este modo, puede clasificarse a los organismos vivos según el número de células que posean: si solo tienen una, se les denomina unicelulares (como pueden ser los protozoos o las bacterias, organismos microscópicos); si poseen más, se les llama pluricelulares. En estos últimos el número de células es variable: de unos pocos cientos, como en algunos nematodos, a cientos de billones (1014), como en el caso del ser humano. Las células suelen poseer un tamaño de 10 µm y una masa de 1 ng, si bien existen células mucho mayores." --- # Spanish T5 (small) fine-tuned on **SQAC** for Spanish **QA** 📖❓ [spanish-T5-small](https://huggingface.co/flax-community/spanish-t5-small) fine-tuned on [SQAC](https://huggingface.co/datasets/BSC-TeMU/SQAC) for **Q&A** downstream task. ## Details of Spanish T5 (small) T5 (small) like arch trained from scatch on [large_spanish_corpus](https://huggingface.co/datasets/large_spanish_corpus) for **HuggingFace/Flax/Jax Week**. ## Details of the dataset 📚 This dataset contains 6,247 contexts and 18,817 questions with their answers, 1 to 5 for each fragment. The sources of the contexts are: * Encyclopedic articles from [Wikipedia in Spanish](https://es.wikipedia.org/), used under [CC-by-sa licence](https://creativecommons.org/licenses/by-sa/3.0/legalcode). * News from [Wikinews in Spanish](https://es.wikinews.org/), used under [CC-by licence](https://creativecommons.org/licenses/by/2.5/). * Text from the Spanish corpus [AnCora](http://clic.ub.edu/corpus/en), which is a mix from diferent newswire and literature sources, used under [CC-by licence](https://creativecommons.org/licenses/by/4.0/legalcode). This dataset can be used to build extractive-QA. ## Results on test dataset 📝 | Metric | # Value | | ------ | --------- | | **BLEU** | **41.94** | ## Model in Action 🚀 ```python from transformers import T5ForConditionalGeneration, AutoTokenizer import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') ckpt = 'mrm8488/spanish-t5-small-sqac-for-qa' tokenizer = AutoTokenizer.from_pretrained(ckpt) model = T5ForConditionalGeneration.from_pretrained(ckpt).to(device) def get_answer(question, context): input_text = 'question: %s context: %s' % (question, context) features = tokenizer([input_text ], padding='max_length', truncation=True, max_length=512, return_tensors='pt') output = model.generate(input_ids=features['input_ids'].to(device), attention_mask=features['attention_mask'].to(device)) return tokenizer.decode(output[0], skip_special_tokens=True) ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) with the support of [Narrativa](https://www.narrativa.com/) > Made with in Spain