--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: deberta-v3-small results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9403669724770642 --- # deberta-v3-small This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.2134 - Accuracy: 0.9404 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.176 | 1.0 | 4210 | 0.2134 | 0.9404 | | 0.1254 | 2.0 | 8420 | 0.2362 | 0.9415 | | 0.0957 | 3.0 | 12630 | 0.3187 | 0.9335 | | 0.0673 | 4.0 | 16840 | 0.3039 | 0.9266 | | 0.0457 | 5.0 | 21050 | 0.3521 | 0.9312 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3