--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: deberta-v3-small results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.6333205721749096 --- # deberta-v3-small This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.4051 - Matthews Correlation: 0.6333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 535 | 0.4051 | 0.6333 | | 0.3371 | 2.0 | 1070 | 0.4455 | 0.6531 | | 0.3371 | 3.0 | 1605 | 0.5755 | 0.6499 | | 0.1305 | 4.0 | 2140 | 0.7188 | 0.6553 | | 0.1305 | 5.0 | 2675 | 0.8047 | 0.6700 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3