--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: data2vec-text-base-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9231651376146789 --- # data2vec-text-base-finetuned-sst2 This model is a fine-tuned version of [facebook/data2vec-text-base](https://huggingface.co/facebook/data2vec-text-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3600 - Accuracy: 0.9232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.1519343408010398e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2865 | 1.0 | 4210 | 0.2662 | 0.9128 | | 0.2256 | 2.0 | 8420 | 0.3698 | 0.9002 | | 0.1676 | 3.0 | 12630 | 0.3107 | 0.9186 | | 0.1481 | 4.0 | 16840 | 0.3425 | 0.9186 | | 0.1429 | 5.0 | 21050 | 0.3600 | 0.9232 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1