--- exported_from: Undi95/Miqu-70B-Alpaca-DPO language: - en library_name: transformers quantized_by: mradermacher --- ## About static quants of https://huggingface.co/Undi95/Miqu-70B-Alpaca-DPO weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Miqu-70B-Alpaca-DPO-GGUF/resolve/main/Miqu-70B-Alpaca-DPO.Q2_K.gguf) | Q2_K | 25.9 | | | [GGUF](https://huggingface.co/mradermacher/Miqu-70B-Alpaca-DPO-GGUF/resolve/main/Miqu-70B-Alpaca-DPO.IQ3_XS.gguf) | IQ3_XS | 28.7 | | | [GGUF](https://huggingface.co/mradermacher/Miqu-70B-Alpaca-DPO-GGUF/resolve/main/Miqu-70B-Alpaca-DPO.Q3_K_S.gguf) | Q3_K_S | 30.3 | | | [GGUF](https://huggingface.co/mradermacher/Miqu-70B-Alpaca-DPO-GGUF/resolve/main/Miqu-70B-Alpaca-DPO.Q3_K_M.gguf) | Q3_K_M | 33.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Miqu-70B-Alpaca-DPO-GGUF/resolve/main/Miqu-70B-Alpaca-DPO.Q3_K_L.gguf) | Q3_K_L | 36.6 | | | [GGUF](https://huggingface.co/mradermacher/Miqu-70B-Alpaca-DPO-GGUF/resolve/main/Miqu-70B-Alpaca-DPO.Q4_0.gguf) | Q4_0 | 39.3 | | | [GGUF](https://huggingface.co/mradermacher/Miqu-70B-Alpaca-DPO-GGUF/resolve/main/Miqu-70B-Alpaca-DPO.Q4_K_S.gguf) | Q4_K_S | 39.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Miqu-70B-Alpaca-DPO-GGUF/resolve/main/Miqu-70B-Alpaca-DPO.Q4_K_M.gguf) | Q4_K_M | 41.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Miqu-70B-Alpaca-DPO-GGUF/resolve/main/Miqu-70B-Alpaca-DPO.Q5_K_S.gguf) | Q5_K_S | 47.9 | | | [GGUF](https://huggingface.co/mradermacher/Miqu-70B-Alpaca-DPO-GGUF/resolve/main/Miqu-70B-Alpaca-DPO.Q5_K_M.gguf) | Q5_K_M | 49.2 | | | [PART 1](https://huggingface.co/mradermacher/Miqu-70B-Alpaca-DPO-GGUF/resolve/main/Miqu-70B-Alpaca-DPO.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Miqu-70B-Alpaca-DPO-GGUF/resolve/main/Miqu-70B-Alpaca-DPO.Q6_K.gguf.part2of2) | Q6_K | 57.0 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Miqu-70B-Alpaca-DPO-GGUF/resolve/main/Miqu-70B-Alpaca-DPO.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Miqu-70B-Alpaca-DPO-GGUF/resolve/main/Miqu-70B-Alpaca-DPO.Q8_0.gguf.part2of2) | Q8_0 | 73.6 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.