File size: 3,909 Bytes
f922802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278a7a9
 
 
 
 
 
f922802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6db89b5
 
f922802
 
 
6db89b5
f922802
 
6db89b5
f922802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
base_model: Kaoeiri/Keiana-L3-Test6.2-8B-18
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- merge
- mergekit
- lazymergekit
- Kaoeiri/Keiana-L3-Test5.4-8B-10
- Kaoeiri/Keiana-L3-Test4.7-8B-3
- Kaoeiri/Keiana-L3-Test6-8B-16
---
## About

<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type:  -->
<!-- ### tags: nicoboss -->
static quants of https://huggingface.co/Kaoeiri/Keiana-L3-Test6.2-8B-18

<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Keiana-L3-Test6.2-8B-18-i1-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Keiana-L3-Test6.2-8B-18-GGUF/resolve/main/Keiana-L3-Test6.2-8B-18.Q2_K.gguf) | Q2_K | 3.3 |  |
| [GGUF](https://huggingface.co/mradermacher/Keiana-L3-Test6.2-8B-18-GGUF/resolve/main/Keiana-L3-Test6.2-8B-18.Q3_K_S.gguf) | Q3_K_S | 3.8 |  |
| [GGUF](https://huggingface.co/mradermacher/Keiana-L3-Test6.2-8B-18-GGUF/resolve/main/Keiana-L3-Test6.2-8B-18.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Keiana-L3-Test6.2-8B-18-GGUF/resolve/main/Keiana-L3-Test6.2-8B-18.Q3_K_L.gguf) | Q3_K_L | 4.4 |  |
| [GGUF](https://huggingface.co/mradermacher/Keiana-L3-Test6.2-8B-18-GGUF/resolve/main/Keiana-L3-Test6.2-8B-18.IQ4_XS.gguf) | IQ4_XS | 4.6 |  |
| [GGUF](https://huggingface.co/mradermacher/Keiana-L3-Test6.2-8B-18-GGUF/resolve/main/Keiana-L3-Test6.2-8B-18.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.8 | fast on arm, low quality |
| [GGUF](https://huggingface.co/mradermacher/Keiana-L3-Test6.2-8B-18-GGUF/resolve/main/Keiana-L3-Test6.2-8B-18.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Keiana-L3-Test6.2-8B-18-GGUF/resolve/main/Keiana-L3-Test6.2-8B-18.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Keiana-L3-Test6.2-8B-18-GGUF/resolve/main/Keiana-L3-Test6.2-8B-18.Q5_K_S.gguf) | Q5_K_S | 5.7 |  |
| [GGUF](https://huggingface.co/mradermacher/Keiana-L3-Test6.2-8B-18-GGUF/resolve/main/Keiana-L3-Test6.2-8B-18.Q5_K_M.gguf) | Q5_K_M | 5.8 |  |
| [GGUF](https://huggingface.co/mradermacher/Keiana-L3-Test6.2-8B-18-GGUF/resolve/main/Keiana-L3-Test6.2-8B-18.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Keiana-L3-Test6.2-8B-18-GGUF/resolve/main/Keiana-L3-Test6.2-8B-18.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Keiana-L3-Test6.2-8B-18-GGUF/resolve/main/Keiana-L3-Test6.2-8B-18.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.

<!-- end -->