mradermacher commited on
Commit
9c4b95b
1 Parent(s): 4160743

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md CHANGED
@@ -1,6 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: nicoboss -->
6
  weighted/imatrix quants of https://huggingface.co/shenzhi-wang/Gemma-2-27B-Chinese-Chat
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: shenzhi-wang/Gemma-2-27B-Chinese-Chat
3
+ language:
4
+ - en
5
+ - zh
6
+ library_name: transformers
7
+ license: gemma
8
+ quantized_by: mradermacher
9
+ tags:
10
+ - llama-factory
11
+ - orpo
12
+ ---
13
+ ## About
14
+
15
  <!-- ### quantize_version: 2 -->
16
  <!-- ### output_tensor_quantised: 1 -->
17
  <!-- ### convert_type: hf -->
18
  <!-- ### vocab_type: -->
19
  <!-- ### tags: nicoboss -->
20
  weighted/imatrix quants of https://huggingface.co/shenzhi-wang/Gemma-2-27B-Chinese-Chat
21
+
22
+ <!-- provided-files -->
23
+ static quants are available at https://huggingface.co/mradermacher/Gemma-2-27B-Chinese-Chat-GGUF
24
+ ## Usage
25
+
26
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
27
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
28
+ more details, including on how to concatenate multi-part files.
29
+
30
+ ## Provided Quants
31
+
32
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
33
+
34
+ | Link | Type | Size/GB | Notes |
35
+ |:-----|:-----|--------:|:------|
36
+ | [GGUF](https://huggingface.co/mradermacher/Gemma-2-27B-Chinese-Chat-i1-GGUF/resolve/main/Gemma-2-27B-Chinese-Chat.i1-IQ2_M.gguf) | i1-IQ2_M | 9.5 | |
37
+ | [GGUF](https://huggingface.co/mradermacher/Gemma-2-27B-Chinese-Chat-i1-GGUF/resolve/main/Gemma-2-27B-Chinese-Chat.i1-Q2_K.gguf) | i1-Q2_K | 10.5 | IQ3_XXS probably better |
38
+ | [GGUF](https://huggingface.co/mradermacher/Gemma-2-27B-Chinese-Chat-i1-GGUF/resolve/main/Gemma-2-27B-Chinese-Chat.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 10.9 | lower quality |
39
+ | [GGUF](https://huggingface.co/mradermacher/Gemma-2-27B-Chinese-Chat-i1-GGUF/resolve/main/Gemma-2-27B-Chinese-Chat.i1-IQ3_XS.gguf) | i1-IQ3_XS | 11.7 | |
40
+ | [GGUF](https://huggingface.co/mradermacher/Gemma-2-27B-Chinese-Chat-i1-GGUF/resolve/main/Gemma-2-27B-Chinese-Chat.i1-IQ3_S.gguf) | i1-IQ3_S | 12.3 | beats Q3_K* |
41
+ | [GGUF](https://huggingface.co/mradermacher/Gemma-2-27B-Chinese-Chat-i1-GGUF/resolve/main/Gemma-2-27B-Chinese-Chat.i1-Q3_K_S.gguf) | i1-Q3_K_S | 12.3 | IQ3_XS probably better |
42
+ | [GGUF](https://huggingface.co/mradermacher/Gemma-2-27B-Chinese-Chat-i1-GGUF/resolve/main/Gemma-2-27B-Chinese-Chat.i1-IQ3_M.gguf) | i1-IQ3_M | 12.6 | |
43
+ | [GGUF](https://huggingface.co/mradermacher/Gemma-2-27B-Chinese-Chat-i1-GGUF/resolve/main/Gemma-2-27B-Chinese-Chat.i1-Q3_K_M.gguf) | i1-Q3_K_M | 13.5 | IQ3_S probably better |
44
+ | [GGUF](https://huggingface.co/mradermacher/Gemma-2-27B-Chinese-Chat-i1-GGUF/resolve/main/Gemma-2-27B-Chinese-Chat.i1-Q3_K_L.gguf) | i1-Q3_K_L | 14.6 | IQ3_M probably better |
45
+ | [GGUF](https://huggingface.co/mradermacher/Gemma-2-27B-Chinese-Chat-i1-GGUF/resolve/main/Gemma-2-27B-Chinese-Chat.i1-IQ4_XS.gguf) | i1-IQ4_XS | 14.9 | |
46
+ | [GGUF](https://huggingface.co/mradermacher/Gemma-2-27B-Chinese-Chat-i1-GGUF/resolve/main/Gemma-2-27B-Chinese-Chat.i1-Q4_0.gguf) | i1-Q4_0 | 15.8 | fast, low quality |
47
+ | [GGUF](https://huggingface.co/mradermacher/Gemma-2-27B-Chinese-Chat-i1-GGUF/resolve/main/Gemma-2-27B-Chinese-Chat.i1-Q4_K_S.gguf) | i1-Q4_K_S | 15.8 | optimal size/speed/quality |
48
+ | [GGUF](https://huggingface.co/mradermacher/Gemma-2-27B-Chinese-Chat-i1-GGUF/resolve/main/Gemma-2-27B-Chinese-Chat.i1-Q4_K_M.gguf) | i1-Q4_K_M | 16.7 | fast, recommended |
49
+ | [GGUF](https://huggingface.co/mradermacher/Gemma-2-27B-Chinese-Chat-i1-GGUF/resolve/main/Gemma-2-27B-Chinese-Chat.i1-Q5_K_S.gguf) | i1-Q5_K_S | 19.0 | |
50
+ | [GGUF](https://huggingface.co/mradermacher/Gemma-2-27B-Chinese-Chat-i1-GGUF/resolve/main/Gemma-2-27B-Chinese-Chat.i1-Q5_K_M.gguf) | i1-Q5_K_M | 19.5 | |
51
+ | [GGUF](https://huggingface.co/mradermacher/Gemma-2-27B-Chinese-Chat-i1-GGUF/resolve/main/Gemma-2-27B-Chinese-Chat.i1-Q6_K.gguf) | i1-Q6_K | 22.4 | practically like static Q6_K |
52
+
53
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
54
+ types (lower is better):
55
+
56
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
57
+
58
+ And here are Artefact2's thoughts on the matter:
59
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
60
+
61
+ ## FAQ / Model Request
62
+
63
+ See https://huggingface.co/mradermacher/model_requests for some answers to
64
+ questions you might have and/or if you want some other model quantized.
65
+
66
+ ## Thanks
67
+
68
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
69
+ me use its servers and providing upgrades to my workstation to enable
70
+ this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
71
+
72
+ <!-- end -->