--- library_name: transformers base_model: layoutlmv3 tags: - generated_from_trainer datasets: - mp-02/sroie metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-base-sroie results: - task: name: Token Classification type: token-classification dataset: name: mp-02/sroie type: mp-02/sroie metrics: - name: Precision type: precision value: 0.9469573706475757 - name: Recall type: recall value: 0.9648541114058355 - name: F1 type: f1 value: 0.9558219740515684 - name: Accuracy type: accuracy value: 0.9863575751359114 --- # layoutlmv3-base-sroie This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/sroie dataset. It achieves the following results on the evaluation set: - Loss: 0.0526 - Precision: 0.9470 - Recall: 0.9649 - F1: 0.9558 - Accuracy: 0.9864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 2.5 | 100 | 0.0806 | 0.9001 | 0.9377 | 0.9185 | 0.9759 | | No log | 5.0 | 200 | 0.0541 | 0.9392 | 0.9576 | 0.9483 | 0.9840 | | No log | 7.5 | 300 | 0.0515 | 0.9368 | 0.9629 | 0.9496 | 0.9844 | | No log | 10.0 | 400 | 0.0515 | 0.9450 | 0.9622 | 0.9535 | 0.9856 | | 0.0717 | 12.5 | 500 | 0.0526 | 0.9470 | 0.9649 | 0.9558 | 0.9864 | | 0.0717 | 15.0 | 600 | 0.0558 | 0.9353 | 0.9685 | 0.9516 | 0.9849 | | 0.0717 | 17.5 | 700 | 0.0668 | 0.9408 | 0.9635 | 0.9520 | 0.9852 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1