--- license: other base_model: nvidia/segformer-b2-finetuned-ade-512-512 tags: - vision - image-segmentation - generated_from_trainer metrics: - precision model-index: - name: segformer_b2_finetuned_segment_pv_p100_4batch results: [] --- [Visualize in Weights & Biases](https://wandb.ai/mouadn773/segformer-pv-4batches/runs/a86baba8) # segformer_b2_finetuned_segment_pv_p100_4batch This model is a fine-tuned version of [nvidia/segformer-b2-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b2-finetuned-ade-512-512) on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set: - Loss: 0.0090 - Mean Iou: 0.8765 - Precision: 0.9192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:| | 0.5015 | 1.0 | 917 | 0.1494 | 0.5660 | 0.6026 | | 0.0714 | 2.0 | 1834 | 0.0237 | 0.7528 | 0.7988 | | 0.0171 | 3.0 | 2751 | 0.0101 | 0.7978 | 0.8930 | | 0.0087 | 4.0 | 3668 | 0.0072 | 0.8260 | 0.8534 | | 0.0058 | 5.0 | 4585 | 0.0067 | 0.8418 | 0.8981 | | 0.0046 | 6.0 | 5502 | 0.0056 | 0.8457 | 0.8971 | | 0.0038 | 7.0 | 6419 | 0.0056 | 0.8530 | 0.8770 | | 0.0034 | 8.0 | 7336 | 0.0056 | 0.8525 | 0.8978 | | 0.003 | 9.0 | 8253 | 0.0052 | 0.8643 | 0.9063 | | 0.0028 | 10.0 | 9170 | 0.0054 | 0.8641 | 0.9010 | | 0.0027 | 11.0 | 10087 | 0.0065 | 0.8489 | 0.9236 | | 0.0025 | 12.0 | 11004 | 0.0066 | 0.8432 | 0.9006 | | 0.0024 | 13.0 | 11921 | 0.0055 | 0.8637 | 0.9242 | | 0.0022 | 14.0 | 12838 | 0.0054 | 0.8679 | 0.9104 | | 0.0024 | 15.0 | 13755 | 0.0055 | 0.8719 | 0.9171 | | 0.0019 | 16.0 | 14672 | 0.0055 | 0.8746 | 0.9219 | | 0.0019 | 17.0 | 15589 | 0.0056 | 0.8668 | 0.9062 | | 0.0018 | 18.0 | 16506 | 0.0063 | 0.8703 | 0.9121 | | 0.0017 | 19.0 | 17423 | 0.0062 | 0.8694 | 0.9084 | | 0.0016 | 20.0 | 18340 | 0.0063 | 0.8719 | 0.9133 | | 0.0015 | 21.0 | 19257 | 0.0065 | 0.8734 | 0.9159 | | 0.0014 | 22.0 | 20174 | 0.0068 | 0.8730 | 0.9155 | | 0.0015 | 23.0 | 21091 | 0.0069 | 0.8719 | 0.9228 | | 0.0013 | 24.0 | 22008 | 0.0069 | 0.8745 | 0.9162 | | 0.0013 | 25.0 | 22925 | 0.0069 | 0.8757 | 0.9196 | | 0.0012 | 26.0 | 23842 | 0.0075 | 0.8747 | 0.9138 | | 0.0012 | 27.0 | 24759 | 0.0074 | 0.8750 | 0.9159 | | 0.0012 | 28.0 | 25676 | 0.0074 | 0.8755 | 0.9213 | | 0.0011 | 29.0 | 26593 | 0.0081 | 0.8762 | 0.9154 | | 0.0011 | 30.0 | 27510 | 0.0083 | 0.8754 | 0.9162 | | 0.0011 | 31.0 | 28427 | 0.0084 | 0.8753 | 0.9168 | | 0.001 | 32.0 | 29344 | 0.0083 | 0.8754 | 0.9202 | | 0.001 | 33.0 | 30261 | 0.0085 | 0.8758 | 0.9174 | | 0.001 | 34.0 | 31178 | 0.0085 | 0.8758 | 0.9208 | | 0.0009 | 35.0 | 32095 | 0.0088 | 0.8763 | 0.9191 | | 0.0009 | 36.0 | 33012 | 0.0090 | 0.8756 | 0.9172 | | 0.0009 | 37.0 | 33929 | 0.0090 | 0.8760 | 0.9181 | | 0.0009 | 38.0 | 34846 | 0.0087 | 0.8764 | 0.9195 | | 0.0009 | 39.0 | 35763 | 0.0090 | 0.8763 | 0.9184 | | 0.0009 | 40.0 | 36680 | 0.0090 | 0.8765 | 0.9192 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1