--- license: other base_model: nvidia/segformer-b1-finetuned-ade-512-512 tags: - vision - image-segmentation - generated_from_trainer metrics: - precision model-index: - name: segformer_b1_finetuned_segment_pv_p100_4batch results: [] --- [Visualize in Weights & Biases](https://wandb.ai/mouadn773/segformer-pv-4batches/runs/0aseuh20) # segformer_b1_finetuned_segment_pv_p100_4batch This model is a fine-tuned version of [nvidia/segformer-b1-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b1-finetuned-ade-512-512) on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set: - Loss: 0.0072 - Mean Iou: 0.8692 - Precision: 0.9162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:| | 0.4877 | 1.0 | 917 | 0.2178 | 0.5326 | 0.6037 | | 0.0992 | 2.0 | 1834 | 0.0258 | 0.7353 | 0.7913 | | 0.022 | 3.0 | 2751 | 0.0119 | 0.7764 | 0.9267 | | 0.0106 | 4.0 | 3668 | 0.0084 | 0.8093 | 0.8316 | | 0.0069 | 5.0 | 4585 | 0.0070 | 0.8327 | 0.8698 | | 0.0054 | 6.0 | 5502 | 0.0057 | 0.8431 | 0.8829 | | 0.0044 | 7.0 | 6419 | 0.0055 | 0.8494 | 0.8877 | | 0.0039 | 8.0 | 7336 | 0.0059 | 0.8474 | 0.9002 | | 0.0036 | 9.0 | 8253 | 0.0056 | 0.8505 | 0.8894 | | 0.0031 | 10.0 | 9170 | 0.0054 | 0.8575 | 0.8994 | | 0.0031 | 11.0 | 10087 | 0.0051 | 0.8620 | 0.9190 | | 0.0027 | 12.0 | 11004 | 0.0053 | 0.8646 | 0.9043 | | 0.0026 | 13.0 | 11921 | 0.0059 | 0.8643 | 0.9275 | | 0.0028 | 14.0 | 12838 | 0.0055 | 0.8641 | 0.9131 | | 0.0025 | 15.0 | 13755 | 0.0053 | 0.8661 | 0.9120 | | 0.0023 | 16.0 | 14672 | 0.0056 | 0.8644 | 0.9107 | | 0.0022 | 17.0 | 15589 | 0.0052 | 0.8668 | 0.9125 | | 0.0022 | 18.0 | 16506 | 0.0054 | 0.8700 | 0.9143 | | 0.0022 | 19.0 | 17423 | 0.0059 | 0.8685 | 0.9180 | | 0.002 | 20.0 | 18340 | 0.0057 | 0.8696 | 0.9157 | | 0.0019 | 21.0 | 19257 | 0.0061 | 0.8682 | 0.9136 | | 0.0019 | 22.0 | 20174 | 0.0069 | 0.8606 | 0.9262 | | 0.0019 | 23.0 | 21091 | 0.0062 | 0.8700 | 0.9172 | | 0.0018 | 24.0 | 22008 | 0.0061 | 0.8682 | 0.9258 | | 0.0019 | 25.0 | 22925 | 0.0062 | 0.8669 | 0.9124 | | 0.002 | 26.0 | 23842 | 0.0065 | 0.8672 | 0.9206 | | 0.0017 | 27.0 | 24759 | 0.0062 | 0.8688 | 0.9108 | | 0.0016 | 28.0 | 25676 | 0.0066 | 0.8686 | 0.9154 | | 0.0016 | 29.0 | 26593 | 0.0066 | 0.8704 | 0.9175 | | 0.0016 | 30.0 | 27510 | 0.0068 | 0.8664 | 0.9127 | | 0.0015 | 31.0 | 28427 | 0.0069 | 0.8679 | 0.9150 | | 0.0015 | 32.0 | 29344 | 0.0065 | 0.8691 | 0.9196 | | 0.0015 | 33.0 | 30261 | 0.0069 | 0.8676 | 0.9130 | | 0.0014 | 34.0 | 31178 | 0.0067 | 0.8691 | 0.9164 | | 0.0014 | 35.0 | 32095 | 0.0071 | 0.8679 | 0.9153 | | 0.0014 | 36.0 | 33012 | 0.0072 | 0.8687 | 0.9127 | | 0.0014 | 37.0 | 33929 | 0.0073 | 0.8689 | 0.9151 | | 0.0014 | 38.0 | 34846 | 0.0069 | 0.8696 | 0.9183 | | 0.0014 | 39.0 | 35763 | 0.0070 | 0.8694 | 0.9163 | | 0.0013 | 40.0 | 36680 | 0.0072 | 0.8692 | 0.9162 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1