--- license: apache-2.0 datasets: - squad_v2 - drop language: - en library_name: transformers tags: - General purpose - Text2text Generation metrics: - bertscore - accuracy - rouge --- # Model Card Base Model: facebook/bart-base Fine-tuned : using PEFT-LoRa Datasets : squad_v2, drop Task: Generating questions from context and answers Language: English # Loading the model ```python from peft import PeftModel, PeftConfig from transformers import AutoModelForSeq2SeqLM, AutoTokenizer HUGGING_FACE_USER_NAME = "mou3az" model_name = "Question-Generation" peft_model_id = f"{HUGGING_FACE_USER_NAME}/{model_name}" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=False, device_map='auto') QG_tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) QG_model = PeftModel.from_pretrained(model, peft_model_id) ``` # At inference time ```python def get_question(context, answer): device = next(QG_model.parameters()).device input_text = f"Given the context '{context}' and the answer '{answer}', what question can be asked?" encoding = QG_tokenizer.encode_plus(input_text, padding=True, return_tensors="pt").to(device) output_tokens = QG_model.generate(**encoding, early_stopping=True, num_beams=5, num_return_sequences=1, no_repeat_ngram_size=2, max_length=100) out = QG_tokenizer.decode(output_tokens[0], skip_special_tokens=True).replace("question:", "").strip() return out ``` # Training parameters and hyperparameters The following were used during training: For Lora: r=18 alpha=8 For training arguments: gradient_accumulation_steps=16 per_device_train_batch_size=8 per_device_eval_batch_size=8 max_steps=3000 warmup_steps=75 weight_decay=0.05 learning_rate=1e-3 lr_scheduler_type="linear" # Performance Metrics on Evaluation Set: for 3000 optimization steps: Training Loss: 1.292400 Evaluation Loss: 1.244928 Bertscore: 0.8123 Rouge: 0.532144 Fuzzywizzy similarity: 0.74209