File size: 15,142 Bytes
22bd597 046fa10 22bd597 fdb2891 d82a685 046fa10 22bd597 d82a685 22bd597 d82a685 22bd597 046fa10 22bd597 fdb2891 22bd597 d82a685 22bd597 d82a685 22bd597 d82a685 046fa10 d82a685 22bd597 046fa10 d82a685 22bd597 046fa10 22bd597 046fa10 d82a685 22bd597 d82a685 046fa10 d82a685 22bd597 046fa10 fdb2891 22bd597 d82a685 22bd597 046fa10 22bd597 046fa10 22bd597 fdb2891 22bd597 d82a685 fdb2891 d82a685 22bd597 d82a685 046fa10 d82a685 046fa10 d82a685 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
"""A HuggingFace-style model configuration."""
import warnings
from typing import Any, Dict, Optional, Union
from transformers import PretrainedConfig
from .attention import check_alibi_support, is_flash_v2_installed
from .blocks import attn_config_defaults
from .fc import FC_CLASS_REGISTRY
from .norm import LPLayerNorm
from .ffn import FFN_CLASS_REGISTRY
ffn_config_defaults: Dict = {'ffn_type': 'mptmlp'}
init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu', 'init_div_is_residual': True, 'emb_init_std': None, 'emb_init_uniform_lim': None, 'init_std': None, 'init_gain': 0.0}
class MPTConfig(PretrainedConfig):
model_type = 'mpt'
def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: Union[int, float]=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, ffn_config: Dict=ffn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False, embedding_fraction: float=1.0, norm_type: str='low_precision_layernorm', use_cache: bool=False, init_config: Dict=init_config_defaults, fc_type: str='torch', tie_word_embeddings: bool=True, use_pad_tok_in_ffn: bool=True, **kwargs: Any):
"""The MPT configuration class.
Args:
d_model (int): The size of the embedding dimension of the model.
n_heads (int): The number of attention heads.
n_layers (int): The number of layers in the model.
expansion_ratio (Union[int, float]): The ratio of the up/down scale in the ffn.
max_seq_len (int): The maximum sequence length of the model.
vocab_size (int): The size of the vocabulary.
resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
emb_pdrop (float): The dropout probability for the embedding layer.
learned_pos_emb (bool): Whether to use learned positional embeddings
attn_config (Dict): A dictionary used to configure the model's attention module:
attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention, grouped_query_attention
attn_pdrop (float): The dropout probability for the attention layers.
attn_impl (str): The attention implementation to use. One of 'torch' or 'flash'.
qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
qk_gn (bool): Whether to apply group normalization to the queries and keys in the attention layer.
clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
this value.
softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
use the default scale of ``1/sqrt(d_keys)``.
attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
which sub-sequence each token belongs to.
Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
sliding_window_size (int): Window size for sliding window local attention. Defaults to -1, which means no sliding window. Query at position i will only attend to keys between [i + seqlen_k - seqlen_q - window_size, i + seqlen_k - seqlen_q + window_size] inclusive. Only works for flash attention v2.3.0 or higher.
alibi (bool): Whether to use the alibi bias instead of position embeddings.
alibi_bias_max (int): The maximum value of the alibi bias.
rope (bool): Whether to use rotary positional embeddings.
rope_theta (int): The base frequency for rope.
rope_impl (str): The implementation of rope to use. One of 'hf' (to use the implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py) or 'dail' (to use the implementation from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py).
rope_dail_config (Dict): The configuration for the dail implementation of rope.
type (str): The type of rotary position embedding to use. Options: 'original' (for https://arxiv.org/pdf/2104.09864.pdf), 'xpos' (for https://arxiv.org/pdf/2212.10554.pdf).
pos_idx_in_fp32 (bool): If True, the position indices [0, ..., seqlen - 1] are in fp32, otherwise they might be in lower precision. A consequence could be, for example, that bf16 rounds position 1995 to 2000, which leads to them having the same positional embedding.
xpos_scale_base (float): The scale base for XPos (if using XPos).
rope_hf_config (Dict): A dictionary used to configure rope's scaling behavior (when scaling beyond the training length).
type (str): Can be one of 'no_scaling', 'linear', or 'dynamic'. 'no_scaling' uses the default implementation for rotary embeddings, 'linear' uses linear scaling as proposed by the Reddit user /u/kaiokendev, and 'dynamic' uses Dynamic NTK scaling as proposed by the Reddit users /u/bloc97 and /u/emozilla.
factor (float): Scaling factor to use if using 'linear' or 'dynamic' as rope_scaling.type.
kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads.
ffn_config (Dict): A dictionary used to configure the model's ffn module:
ffn_type (str): type of ffn to use. Options: mptmlp, mptglu, te_ln_mlp
init_device (str): The device to use for parameter initialization.
logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
no_bias (bool): Whether to use bias in all layers.
embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
norm_type (str): choose type of norm to use
use_cache (bool): Whether or not the model should return the last key/values attentions
init_config (Dict): A dictionary used to configure the model initialization:
init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
'kaiming_uniform_', 'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or
'xavier_normal_'. These mimic the parameter initialization methods in PyTorch.
init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
init_std (float): The standard deviation of the normal distribution used to initialize the model,
if using the baseline_ parameter initialization scheme.
init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
---
See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
fc_type (str): choose fc layer implementation. Options: torch and te. te layers support fp8 when using H100 GPUs.
tie_word_embeddings (bool): Whether to tie the input embedding and output layers.
use_pad_tok_in_ffn (bool): Whether to forward the pad token in the feedforward networks.
"""
self.d_model = d_model
self.n_heads = n_heads
self.n_layers = n_layers
self.expansion_ratio = expansion_ratio
self.max_seq_len = max_seq_len
self.vocab_size = vocab_size
self.resid_pdrop = resid_pdrop
self.emb_pdrop = emb_pdrop
self.learned_pos_emb = learned_pos_emb
self.attn_config = attn_config
self.ffn_config = ffn_config
self.init_device = init_device
self.logit_scale = logit_scale
self.no_bias = no_bias
self.embedding_fraction = embedding_fraction
self.norm_type = norm_type
self.use_cache = use_cache
self.init_config = init_config
self.fc_type = fc_type
self.use_pad_tok_in_ffn = use_pad_tok_in_ffn
if 'name' in kwargs:
del kwargs['name']
if 'loss_fn' in kwargs:
del kwargs['loss_fn']
if self.attn_config.get('alibi', False) or self.attn_config.get('rope', False):
self.learned_pos_emb = False
warnings.warn(f'alibi or rope is turned on, setting `learned_pos_emb` to `False.`')
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
self._validate_config()
def _set_config_defaults(self, config: Dict[str, Any], config_defaults: Dict[str, Any]) -> Dict[str, Any]:
for k, v in config_defaults.items():
if k not in config:
config[k] = v
elif isinstance(v, dict):
config[k] = self._set_config_defaults(config[k] if config[k] is not None else {}, v)
return config
def _validate_config(self) -> None:
self.attn_config = self._set_config_defaults(self.attn_config, attn_config_defaults)
self.ffn_config = self._set_config_defaults(self.ffn_config, ffn_config_defaults)
self.init_config = self._set_config_defaults(self.init_config, init_config_defaults)
if self.d_model % self.n_heads != 0:
raise ValueError('d_model must be divisible by n_heads')
if any((prob < 0 or prob > 1 for prob in [self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop])):
raise ValueError("self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1")
if self.attn_config['attn_impl'] not in ['torch', 'flash']:
raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
if self.attn_config['alibi'] and (not check_alibi_support(self.attn_config['attn_impl'])):
raise NotImplementedError('alibi only implemented with torch and flash (v2.4.2 or higher) attention.')
if self.attn_config['attn_uses_sequence_id'] and (not (self.attn_config['attn_impl'] == 'torch' or (self.attn_config['attn_impl'] == 'flash' and is_flash_v2_installed(v2_version='v2.1.2')))):
raise NotImplementedError('attn_uses_sequence_id only implemented with torch and flash (v2.1.2 or higher) attention.')
if self.attn_config['rope'] and self.attn_config['rope_impl'] not in ['dail', 'hf']:
raise ValueError('If rope is being used then rope_impl should be either "dail", or "hf".')
if self.attn_config['rope'] and self.attn_config['rope_impl'] == 'hf' and (self.attn_config['rope_hf_config']['type'] not in ['no_scaling', 'linear', 'dynamic']):
raise ValueError('If using hf implementation of rope, the type should be one of "no_scaling", "linear" or "dynamic".')
if self.attn_config['rope'] and self.attn_config['rope_impl'] == 'dail':
if self.attn_config['rope_dail_config']['type'] not in ['original', 'xpos']:
raise ValueError('If using the dail implementation of rope, the type should be one of "original" or "xpos".')
if not is_flash_v2_installed(v2_version='2.0.1'):
raise ImportError('If using the dail implementation of rope, the flash_attn library v2.0.1 or higher must be installed. Please check the instructions at https://github.com/mosaicml/llm-foundry/blob/main/TUTORIAL.md#what-kinds-of-positional-embeddings-does-llm-foundry-support')
if self.attn_config['sliding_window_size'] != -1 and (not (self.attn_config['attn_impl'] == 'flash' and is_flash_v2_installed(v2_version='v2.3.0'))):
raise NotImplementedError('sliding window only implemented with flash attention v2.3.0 or higher.')
if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
raise ValueError('model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!')
if isinstance(self.logit_scale, str) and self.logit_scale != 'inv_sqrt_d_model':
raise ValueError(f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
if self.init_config.get('name', None) is None:
raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
if not (self.learned_pos_emb or self.attn_config['alibi'] or self.attn_config['rope']):
warnings.warn(f'Positional information not being provided to the model using either learned_pos_emb or alibi or rope.')
if self.fc_type == 'te' or self.ffn_config['ffn_type'] == 'te_ln_mlp':
try:
import transformer_engine.pytorch as te
del te
except:
raise ImportError('TransformerEngine import fail. `fc_type: te` requires TransformerEngine be installed. ' + 'The required version of transformer_engine also requires FlashAttention v1.0.6 is installed:\n' + 'pip install flash-attn==1.0.6 --no-build-isolation \n' + 'pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156')
if self.ffn_config['ffn_type'] == 'mptgeglu':
raise ValueError('API CHANGE: `ffn_type=="mptgeglu"` changed to `ffn_type=="mptglu"`. ' + 'See [#829](https://github.com/mosaicml/llm-foundry/pull/829) for details.')
elif self.ffn_config['ffn_type'] in ['mptmlp', 'mptglu']:
self.ffn_config['fc_type'] = self.fc_type
elif self.ffn_config['ffn_type'] == 'te_ln_mlp':
self.ffn_config['bias'] = not self.no_bias
if 'ffn_act_fn' in self.ffn_config.keys():
raise ValueError(f'Transformer Engine block does not support custom activation functions.')
if not self.use_pad_tok_in_ffn:
try:
from flash_attn.bert_padding import unpad_input, pad_input
except:
raise ImportError('In order to set `use_pad_tok_in_ffn=False`, please install flash-attn==1.0.9 or flash-attn==2.3.6') |