# Copyright 2022 MosaicML Examples authors # SPDX-License-Identifier: Apache-2.0 import math import warnings from collections.abc import Sequence from functools import partial from typing import Optional, Tuple, Union import torch from torch import nn def torch_default_param_init_fn_( module: nn.Module, verbose: int = 0, **kwargs, ): del kwargs # unused, just to capture any extra args from the config if verbose > 1: warnings.warn( f"Initializing network using module's reset_parameters attribute") if hasattr(module, 'reset_parameters'): module.reset_parameters() # type: ignore def fused_init_helper_(module: nn.Module, init_fn_): # parameter initialization is often based on the parameters shape. # If a layer is fused, initialization should be based on the shapes # of the original tensor instead of the shape of the fused tensor. # Layers which are fused should have the _fused attibute defined. # The first element of _fused is the dimension along which the tensor is fused. # This is followed by an iterable of split indices." _fused = getattr(module, '_fused', None) if _fused is None: raise RuntimeError(f'Internal logic error') dim, splits = _fused splits = (0, *splits, module.weight.size(dim)) # type: ignore for s, e in zip(splits[:-1], splits[1:]): slice_indices = [slice(None)] * module.weight.ndim # type: ignore slice_indices[dim] = slice(s, e) init_fn_(module.weight[slice_indices]) # type: ignore def generic_param_init_fn_( module: nn.Module, init_fn_, n_layers: int, d_model: Optional[int] = None, init_div_is_residual: Union[int, float, str, bool] = True, emb_init_std: Optional[float] = None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, verbose: int = 0, **kwargs, ): del kwargs # unused, just to capture any extra args from the config if verbose > 1: warnings.warn( f'If model has bias parameters they are initialized to 0.') # enable user to divide _is_residual weights by # a value which defaults to math.sqrt(2 * cfg.n_layers) init_div_is_residual = init_div_is_residual if init_div_is_residual is False: # not used, for pyright div_is_residual = 1.0 elif init_div_is_residual is True: div_is_residual = math.sqrt(2 * n_layers) elif isinstance(init_div_is_residual, float) or isinstance( init_div_is_residual, int): div_is_residual = init_div_is_residual elif isinstance(init_div_is_residual, str) and init_div_is_residual.isnumeric(): # do not trust YAML parsing to always convert numbers to numbers div_is_residual = float(init_div_is_residual) else: # not used, for pyright div_is_residual = 1.0 raise ValueError( f'Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}' ) if init_div_is_residual is not False: if verbose > 1: warnings.warn( f'Initializing _is_residual layers then dividing them by {div_is_residual}.' +\ f'set `init_div_is_residual: false` in model config to disable this.' ) if isinstance(module, nn.Linear): # Linear if hasattr(module, '_fused'): fused_init_helper_(module, init_fn_) else: init_fn_(module.weight) if module.bias is not None: torch.nn.init.zeros_(module.bias) if init_div_is_residual is not False and getattr( module, '_is_residual', False): with torch.no_grad(): module.weight.div_(div_is_residual) elif isinstance(module, nn.Embedding): # Embedding if emb_init_std is not None: std = emb_init_std if std == 0: warnings.warn(f'Embedding layer initialized to 0.') emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std) if verbose > 1: warnings.warn( f'Embedding layer initialized using normal distribution with mean=0 and {std=}.' ) elif emb_init_uniform_lim is not None: lim = emb_init_uniform_lim if isinstance(lim, Sequence): if len(lim) > 2: raise ValueError( f'Uniform init requires a min and a max limit. User input: {lim}.' ) if lim[0] == lim[1]: warnings.warn(f'Embedding layer initialized to {lim[0]}.') else: if lim == 0: warnings.warn(f'Embedding layer initialized to 0.') lim = [-lim, lim] a, b = lim emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b) if verbose > 1: warnings.warn( f'Embedding layer initialized using uniform distribution in range {lim}.' ) else: emb_init_fn_ = init_fn_ emb_init_fn_(module.weight) elif isinstance(module, nn.LayerNorm): # LayerNorm if verbose > 1: warnings.warn( f'LayerNorm gamma weights are set to 1. If the layer has a bias it is initialized to 0.' ) torch.nn.init.ones_(module.weight) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.MultiheadAttention): # torch's MultiheadAttention if module._qkv_same_embed_dim: assert module.in_proj_weight is not None assert module.q_proj_weight is None and module.k_proj_weight is None and module.v_proj_weight is None assert d_model is not None # in_proj_weight is actually 3 layers and should be split up for width based init _d = d_model splits = (0, _d, 2 * _d, 3 * _d) for s, e in zip(splits[:-1], splits[1:]): init_fn_(module.in_proj_weight[s:e]) else: assert module.q_proj_weight is not None and module.k_proj_weight is not None and module.v_proj_weight is not None assert module.in_proj_weight is None init_fn_(module.q_proj_weight) init_fn_(module.k_proj_weight) init_fn_(module.v_proj_weight) # bias if module.in_proj_bias is not None: torch.nn.init.zeros_(module.in_proj_bias) if module.bias_k is not None: torch.nn.init.zeros_(module.bias_k) if module.bias_v is not None: torch.nn.init.zeros_(module.bias_v) # out proj init_fn_(module.out_proj.weight) if init_div_is_residual is not False and getattr( module.out_proj, '_is_residual', False): with torch.no_grad(): module.out_proj.weight.div_(div_is_residual) if module.out_proj.bias is not None: torch.nn.init.zeros_(module.out_proj.bias) else: for _ in module.parameters(recurse=False): # raise error if uninitialized module has any parameters raise NotImplementedError( f'{module.__class__.__name__} parameters are not initialized by param_init_fn.' ) def _normal_init_(std, mean=0.0): return partial(torch.nn.init.normal_, mean=mean, std=std) def _normal_param_init_fn_( module: nn.Module, std: float, n_layers: int, d_model: Optional[int] = None, init_div_is_residual: Union[int, float, str, bool] = True, emb_init_std: Optional[float] = None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, verbose: int = 0, **kwargs, ): del kwargs # unused, just to capture any extra args from the config init_fn_ = _normal_init_(std=std) if verbose > 1: warnings.warn( f'Using torch.nn.init.normal_ init fn mean=0.0, std={std}') generic_param_init_fn_( module=module, init_fn_=init_fn_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose, ) def baseline_param_init_fn_( module: nn.Module, init_std: float, n_layers: int, d_model: Optional[int] = None, init_div_is_residual: Union[int, float, str, bool] = True, emb_init_std: Optional[float] = None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, verbose: int = 0, **kwargs, ): del kwargs # unused, just to capture any extra args from the config if init_std is None: raise ValueError( 'You must set model.init_std to a float value to use the default initialization scheme.' ) _normal_param_init_fn_( module=module, std=init_std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose, ) def small_param_init_fn_( module: nn.Module, n_layers: int, d_model: int, init_div_is_residual: Union[int, float, str, bool] = True, emb_init_std: Optional[float] = None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, verbose: int = 0, **kwargs, ): del kwargs # unused, just to capture any extra args from the config # very close to kaiming normal # from Transformers without Tears (2019) - Nguyen & Salazar std = math.sqrt(2 / (5 * d_model)) _normal_param_init_fn_( module=module, std=std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose, ) def neox_param_init_fn_( module: nn.Module, n_layers: int, d_model: int, emb_init_std: Optional[float] = None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, verbose: int = 0, **kwargs, ): """From section 2.3.1 of GPT-NeoX-20B: An Open-Source AutoregressiveLanguage Model — Black et. al. (2022) see https://github.com/EleutherAI/gpt-neox/blob/9610391ab319403cef079b438edd016a2443af54/megatron/model/init_functions.py#L151 and https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/transformer.py """ del kwargs # unused, just to capture any extra args from the config residual_div = n_layers / math.sqrt(10) # small std / wang std if verbose > 1: warnings.warn(f'setting init_div_is_residual to {residual_div}') small_param_init_fn_( module=module, d_model=d_model, n_layers=n_layers, init_div_is_residual=residual_div, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose, ) def kaiming_uniform_param_init_fn_( module: nn.Module, n_layers: int, d_model: Optional[int] = None, init_div_is_residual: Union[int, float, str, bool] = True, emb_init_std: Optional[float] = None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, init_gain: float = 0, fan_mode: str = 'fan_in', init_nonlinearity: str = 'leaky_relu', verbose: int = 0, **kwargs, ): del kwargs # unused, just to capture any extra args from the config if verbose > 1: warnings.warn( f'Using nn.init.kaiming_uniform_ init fn with parameters: ' +\ f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}' ) kaiming_uniform_ = partial(nn.init.kaiming_uniform_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity) generic_param_init_fn_( module=module, init_fn_=kaiming_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose, ) def kaiming_normal_param_init_fn_( module: nn.Module, n_layers: int, d_model: Optional[int] = None, init_div_is_residual: Union[int, float, str, bool] = True, emb_init_std: Optional[float] = None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, init_gain: float = 0, fan_mode: str = 'fan_in', init_nonlinearity: str = 'leaky_relu', verbose: int = 0, **kwargs, ): del kwargs # unused, just to capture any extra args from the config if verbose > 1: warnings.warn( f'Using nn.init.kaiming_normal_ init fn with parameters: ' +\ f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}' ) kaiming_normal_ = partial(torch.nn.init.kaiming_normal_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity) generic_param_init_fn_( module=module, init_fn_=kaiming_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose, ) def xavier_uniform_param_init_fn_( module: nn.Module, n_layers: int, d_model: Optional[int] = None, init_div_is_residual: Union[int, float, str, bool] = True, emb_init_std: Optional[float] = None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, init_gain: float = 0, verbose: int = 0, **kwargs, ): del kwargs # unused, just to capture any extra args from the config xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain) if verbose > 1: warnings.warn( f'Using torch.nn.init.xavier_uniform_ init fn with parameters: ' +\ f'gain={init_gain}' ) generic_param_init_fn_( module=module, init_fn_=xavier_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose, ) def xavier_normal_param_init_fn_( module: nn.Module, n_layers: int, d_model: Optional[int] = None, init_div_is_residual: Union[int, float, str, bool] = True, emb_init_std: Optional[float] = None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]] = None, init_gain: float = 0, verbose: int = 0, **kwargs, ): xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain) if verbose > 1: warnings.warn( f'Using torch.nn.init.xavier_normal_ init fn with parameters: ' +\ f'gain={init_gain}' ) generic_param_init_fn_( module=module, init_fn_=xavier_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose, ) MODEL_INIT_REGISTRY = { 'default_': torch_default_param_init_fn_, 'baseline_': baseline_param_init_fn_, 'kaiming_uniform_': kaiming_uniform_param_init_fn_, 'kaiming_normal_': kaiming_normal_param_init_fn_, 'neox_init_': neox_param_init_fn_, 'small_init_': small_param_init_fn_, 'xavier_uniform_': xavier_uniform_param_init_fn_, 'xavier_normal_': xavier_normal_param_init_fn_, }