# Copyright 2022 MosaicML Examples authors # SPDX-License-Identifier: Apache-2.0 """A simple, flexible implementation of a GPT model. Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py """ import math import warnings from typing import List, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from transformers import AutoTokenizer, PreTrainedModel from transformers.modeling_outputs import CausalLMOutputWithPast from .attention import attn_bias as module_attn_bias, attn_bias_shape as module_attn_bias_shape from .gpt_blocks import GPTBlock from .configuration_mosaic_gpt import \ MosaicGPTConfig from .param_init_fns import MODEL_INIT_REGISTRY from .low_precision_layernorm import LPLayerNorm class MosaicGPT(PreTrainedModel): config_class = MosaicGPTConfig base_model_prefix = 'mosaic_gpt' def __init__(self, config: MosaicGPTConfig): super().__init__(config) if config.attn_impl == 'flash' and config.alibi: raise RuntimeError("ALiBi is not supported with flash attention. Please use triton or torch.") self.attn_impl = config.attn_impl self.prefix_lm = config.prefix_lm self.attn_uses_sequence_id = config.attn_uses_sequence_id self.alibi = config.alibi self.alibi_bias_max = config.alibi_bias_max layernorm_class = LPLayerNorm if config.low_precision_layernorm else nn.LayerNorm # CogView (https://arxiv.org/abs/2105.13290) and GLM-130B (https://arxiv.org/abs/2210.02414) # both report this helping with stabilizing training self.embedding_fraction = config.embedding_fraction self.transformer = nn.ModuleDict({ 'wte': nn.Embedding(config.vocab_size, config.d_model, device=config.init_device) }) if not self.alibi: self.transformer.update({ 'wpe': nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device) }) self.transformer.update({'emb_drop': nn.Dropout(config.emb_pdrop)}) self.transformer.update({ 'blocks': nn.ModuleList([ GPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers) ]) }) self.transformer.update({ 'ln_f': layernorm_class(config.d_model, device=config.init_device) }) # enables scaling output logits; similar to a softmax "temperature" # PaLM paper uses scale 1/sqrt(config.d_model) self.logit_scale = None if config.logit_scale is not None: logit_scale = config.logit_scale if isinstance(logit_scale, str): if logit_scale == 'inv_sqrt_d_model': logit_scale = 1 / math.sqrt(config.d_model) else: raise ValueError( f"{logit_scale=} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'." ) self.logit_scale = logit_scale if config.init_device != 'meta': print( f'You are using {config.init_device=}, but you can also use config.init_device="meta" with Composer + FSDP for fast initialization.' ) self.apply(self.param_init_fn) self.is_causal = not self.prefix_lm # define attn mask self._attn_bias_initialized = False self.attn_bias = None self.attn_bias_shape = module_attn_bias_shape( self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id) if config.no_bias: for module in self.modules(): if hasattr(module, 'bias') and isinstance( module.bias, nn.Parameter): if config.verbose: print(f'Removing bias ({module.bias}) from {module}.') module.register_parameter('bias', None) if config.verbose and config.verbose > 2: print(self) @torch.no_grad() def _attn_bias(self, device, dtype, attention_mask: Optional[torch.ByteTensor] = None, prefix_mask: Optional[torch.ByteTensor] = None, sequence_id: Optional[torch.LongTensor] = None): if not self._attn_bias_initialized: if self.attn_bias_shape: self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype) self.attn_bias = module_attn_bias( self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max) self._attn_bias_initialized = True # flash does not support prefix_lm and will incorporate any # attention_mask inside the attention module if self.attn_impl == 'flash': return self.attn_bias, attention_mask attn_bias = self.attn_bias # If using torch or triton, we incorporate the prefix_mask (if appropriate) if self.prefix_lm: assert isinstance(attn_bias, torch.Tensor) # pyright assert isinstance(prefix_mask, torch.Tensor) # pyright attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask) # If using torch or triton, we incorporate sequence_id (if appropriate) if self.attn_uses_sequence_id and sequence_id is not None: assert isinstance(attn_bias, torch.Tensor) # pyright attn_bias = self._apply_sequence_id(attn_bias, sequence_id) # If using torch or triton, we incorporate attention_mask. This will output # None in place of attention_mask since it will not be further needed in the # attention modules. if attention_mask is not None: s_k = attention_mask.shape[-1] if attn_bias is None: attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype) else: attn_bias = attn_bias[:, :, :, -s_k:] if prefix_mask is not None and (attention_mask.shape != prefix_mask.shape): raise ValueError( f'attention_mask shape={attention_mask.shape} ' +\ f'and prefix_mask shape={prefix_mask.shape} are not equal.' ) min_val = torch.finfo(attn_bias.dtype).min attn_bias = attn_bias.masked_fill( ~attention_mask.view(-1, 1, 1, s_k), min_val) return attn_bias, None def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor): s_k, s_q = attn_bias.shape[-2:] if (s_k != self.config.max_seq_len) or (s_q != self.config.max_seq_len): raise ValueError( 'attn_bias does not match the expected shape. ' +\ f'The last two dimensions should both be {self.config.max_length} ' +\ f'but are {s_k} and {s_q}.' ) seq_len = prefix_mask.shape[-1] if seq_len > self.config.max_seq_len: raise ValueError( f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}' ) # select seq_len subset of attn mask attn_bias = attn_bias[..., :seq_len, :seq_len] # Mix the causal max and the bidirectional mask to get the full # allowable attention (i.e. full = not accounting for padding yet) causal = torch.tril( torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1, seq_len, seq_len) prefix = prefix_mask.view(-1, 1, 1, seq_len) cannot_attend = ~torch.logical_or(causal, prefix.bool()) min_val = torch.finfo(attn_bias.dtype).min attn_bias = attn_bias.masked_fill(cannot_attend, min_val) return attn_bias def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor): seq_len = sequence_id.shape[-1] if seq_len > self.config.max_seq_len: raise ValueError( f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}' ) # select seq_len subset of attn mask attn_bias = attn_bias[..., :seq_len, :seq_len] # Restrict attention to tokens that share the same value # in sequence_id cannot_attend = torch.logical_not( torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1) min_val = torch.finfo(attn_bias.dtype).min attn_bias = attn_bias.masked_fill(cannot_attend, min_val) return attn_bias def forward( self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, attention_mask: Optional[torch.ByteTensor] = None, prefix_mask: Optional[torch.ByteTensor] = None, sequence_id: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, use_cache: Optional[bool] = None): return_dict = return_dict if return_dict is not None else self.config.return_dict use_cache = use_cache if use_cache is not None else self.config.use_cache # These args are passed in by keyword in huggingface's generate function # https://github.com/huggingface/transformers/blob/68287689f2f0d8b7063c400230b3766987abf18d/src/transformers/generation/utils.py#L2201-L2206 # but have not yet been fully implemented in MosaicGPT if not return_dict: raise NotImplementedError( 'return_dict False is not implemented yet for MosaicGPT') if output_attentions: raise NotImplementedError( 'output_attentions is not implemented yet for MosaicGPT') if attention_mask is not None and attention_mask[:, 0].sum( ) != attention_mask.shape[0] and self.training: raise NotImplementedError( 'MosaicGPT does not support training with left padding.') if self.prefix_lm and prefix_mask is None: raise ValueError( 'prefix_mask is a required argument when MosaicGPT is configured with prefix_lm=True.' ) if self.training: if self.attn_uses_sequence_id and sequence_id is None: raise ValueError( 'sequence_id is a required argument when MosaicGPT is configured with attn_uses_sequence_id=True ' +\ 'and the model is in train mode.' ) elif (self.attn_uses_sequence_id is False) and (sequence_id is not None): warnings.warn( 'MosaicGPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' +\ 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.' ) S = input_ids.size(1) assert ( S <= self.config.max_seq_len ), f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}' tok_emb = self.transformer.wte(input_ids) # type: ignore if self.alibi: x = tok_emb else: past_position = 0 if past_key_values is not None: if len(past_key_values) != self.config.n_layers: raise ValueError( f'past_key_values must provide a past_key_value for each attention ' +\ f'layer in the network ({len(past_key_values)=}; {self.config.n_layers=}).' ) # get the key tensor whose spec should be (batch, seq, dim), and # collect the `seq`, so that the position embedding is shifted past_position = past_key_values[0][0].size(1) if S + past_position > self.config.max_seq_len: raise ValueError( f'Cannot forward input with past sequence length {past_position} and current sequence length ' f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.' ) pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0) if attention_mask is not None: # adjust the position indices to account for padding tokens pos = torch.clamp(pos - torch.cumsum( (~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0) pos_emb = self.transformer.wpe(pos) # type: ignore x = tok_emb + pos_emb if self.embedding_fraction == 1: x = self.transformer.emb_drop(x) # type: ignore else: # this implementation is proposed on page 7 of the GLM-130B paper https://arxiv.org/abs/2210.02414 x_shrunk = (x * self.embedding_fraction) + ( x.detach() * (1 - self.embedding_fraction)) assert isinstance(self.transformer.emb_drop, nn.Module) # pyright x = self.transformer.emb_drop(x_shrunk) attn_bias, attention_mask = self._attn_bias( device=x.device, dtype=x.dtype, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id) # initialize the past key values cache if it should be used if use_cache and past_key_values is None: past_key_values = [() for _ in range(self.config.n_layers) ] # type: ignore all_hidden_states = () if output_hidden_states else None for b_idx, block in enumerate(self.transformer.blocks): # type: ignore if output_hidden_states: assert all_hidden_states is not None # pyright all_hidden_states = all_hidden_states + (x,) past_key_value = past_key_values[ b_idx] if past_key_values is not None else None x, past_key_value = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal) if past_key_values is not None: past_key_values[b_idx] = past_key_value x = self.transformer.ln_f(x) # type: ignore # output embedding weight tied to input embedding assert isinstance(self.transformer.wte, nn.Module) # pyright assert isinstance(self.transformer.wte.weight, torch.Tensor) # pyright logits = F.linear(x, self.transformer.wte.weight, None) if self.logit_scale is not None: if self.logit_scale == 0: warnings.warn( f'Multiplying logits by {self.logit_scale=}. This will produce uniform (uninformative) outputs.' ) logits *= self.logit_scale return CausalLMOutputWithPast(logits=logits, past_key_values=past_key_values, hidden_states=all_hidden_states) # Param Initialization, needed for device='meta' fast initialization def param_init_fn(self, module): init_fn_name = self.config.param_init_fn if self.config.verbose > 1: warnings.warn(f'Using {init_fn_name} initialization.') MODEL_INIT_REGISTRY[init_fn_name](module=module, **self.config.to_dict()) # FSDP Wrap function def fsdp_wrap_fn(self, module): return isinstance(module, GPTBlock) # Activation Checkpointing def activation_checkpointing_fn(self, module): return isinstance(module, GPTBlock) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): if inputs_embeds is not None: raise NotImplementedError( 'inputs_embeds is not implemented for MosaicGPT yet') attention_mask = kwargs['attention_mask'].bool() if attention_mask[:, -1].sum() != attention_mask.shape[0]: raise NotImplementedError( 'MosaicGPT does not support generation with right padding.') if self.attn_uses_sequence_id and self.training: sequence_id = torch.zeros_like(input_ids[:1]) else: sequence_id = None if past_key_values is not None: input_ids = input_ids[:, -1].unsqueeze(-1) if self.prefix_lm: # Leverage a convenience of sequential generation! prefix_mask = torch.ones_like(attention_mask) # This requires that we're using the cache if kwargs.get('use_cache') == False: raise NotImplementedError( 'MosaicGPT with prefix_lm=True does not support use_cache=False.' ) else: prefix_mask = None return { 'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True), } @staticmethod def _reorder_cache(past_key_values, beam_idx): """Used by HuggingFace generate when using beam search with kv-caching. See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133 for an example in transformers. """ reordered_past = [] for layer_past in past_key_values: reordered_past += [ tuple( past_state.index_select(0, beam_idx) for past_state in layer_past) ] return reordered_past