--- license: gpl-3.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-chinese-finetuned-ner_0220_J_ORIDATA results: [] --- # bert-base-chinese-finetuned-ner_0220_J_ORIDATA This model is a fine-tuned version of [ckiplab/bert-base-chinese-ner](https://huggingface.co/ckiplab/bert-base-chinese-ner) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4109 - Precision: 0.9088 - Recall: 0.9581 - F1: 0.9328 - Accuracy: 0.9478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5095 | 1.0 | 884 | 0.2940 | 0.8565 | 0.9269 | 0.8903 | 0.9355 | | 0.2381 | 2.0 | 1768 | 0.2669 | 0.8910 | 0.9474 | 0.9184 | 0.9442 | | 0.2057 | 3.0 | 2652 | 0.2566 | 0.9011 | 0.9507 | 0.9252 | 0.9438 | | 0.1856 | 4.0 | 3536 | 0.2811 | 0.9053 | 0.9507 | 0.9275 | 0.9414 | | 0.1386 | 5.0 | 4420 | 0.3108 | 0.9019 | 0.9523 | 0.9265 | 0.9481 | | 0.1224 | 6.0 | 5304 | 0.3265 | 0.8978 | 0.9532 | 0.9247 | 0.9430 | | 0.0891 | 7.0 | 6188 | 0.3601 | 0.9071 | 0.9548 | 0.9303 | 0.9471 | | 0.08 | 8.0 | 7072 | 0.3555 | 0.8931 | 0.9540 | 0.9225 | 0.9458 | | 0.0547 | 9.0 | 7956 | 0.4065 | 0.9089 | 0.9589 | 0.9332 | 0.9482 | | 0.0539 | 10.0 | 8840 | 0.4109 | 0.9088 | 0.9581 | 0.9328 | 0.9478 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.13.0+cu117 - Datasets 2.8.0 - Tokenizers 0.12.1