--- license: apache-2.0 tags: - generated_from_trainer - text-classification - emotion - pytorch language: - en datasets: - emotion metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-base-cased-emotion results: - task: type: text-classification name: text-classification dataset: name: emotion type: emotion config: default split: validation metrics: - name: accuracy type: accuracy value: 0.9235 verified: true - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: default split: test metrics: - name: Accuracy type: accuracy value: 0.9235 verified: true - name: Precision Macro type: precision value: 0.89608475565062 verified: true - name: Precision Micro type: precision value: 0.9235 verified: true - name: Precision Weighted type: precision value: 0.9224273416855945 verified: true - name: Recall Macro type: recall value: 0.8581097243584549 verified: true - name: Recall Micro type: recall value: 0.9235 verified: true - name: Recall Weighted type: recall value: 0.9235 verified: true - name: F1 Macro type: f1 value: 0.8746813002250796 verified: true - name: F1 Micro type: f1 value: 0.9235 verified: true - name: F1 Weighted type: f1 value: 0.9217456925724525 verified: true - name: loss type: loss value: 0.32714536786079407 verified: true - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: default split: validation metrics: - name: Accuracy type: accuracy value: 0.938 verified: true - name: Precision Macro type: precision value: 0.9281100797474869 verified: true - name: Precision Micro type: precision value: 0.938 verified: true - name: Precision Weighted type: precision value: 0.9376891512759605 verified: true - name: Recall Macro type: recall value: 0.9029821552608664 verified: true - name: Recall Micro type: recall value: 0.938 verified: true - name: Recall Weighted type: recall value: 0.938 verified: true - name: F1 Macro type: f1 value: 0.9147207975135915 verified: true - name: F1 Micro type: f1 value: 0.938 verified: true - name: F1 Weighted type: f1 value: 0.9373403463117288 verified: true - name: loss type: loss value: 0.23682540655136108 verified: true --- # distilbert-base-cased-emotion **Training:** The model has been trained using the script provided in the following repository https://github.com/MorenoLaQuatra/transformers-tasks-templates This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on [emotion](https://huggingface.co/datasets/emotion) dataset. It achieves the following results on the evaluation set: - Loss: 0.3272 - Accuracy: 0.9235 - F1: 0.9217 - Precision: 0.9224 - Recall: 0.9235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2776 | 1.0 | 500 | 0.2954 | 0.9 | 0.8957 | 0.9031 | 0.9 | | 0.1887 | 2.0 | 1000 | 0.1716 | 0.934 | 0.9344 | 0.9370 | 0.934 | | 0.119 | 3.0 | 1500 | 0.1614 | 0.9345 | 0.9342 | 0.9377 | 0.9345 | | 0.1001 | 4.0 | 2000 | 0.2018 | 0.936 | 0.9353 | 0.9359 | 0.936 | | 0.0704 | 5.0 | 2500 | 0.1925 | 0.935 | 0.9349 | 0.9354 | 0.935 | | 0.0471 | 6.0 | 3000 | 0.2369 | 0.938 | 0.9373 | 0.9377 | 0.938 | | 0.0322 | 7.0 | 3500 | 0.2693 | 0.938 | 0.9382 | 0.9392 | 0.938 | | 0.0137 | 8.0 | 4000 | 0.2926 | 0.937 | 0.9371 | 0.9372 | 0.937 | | 0.0099 | 9.0 | 4500 | 0.2964 | 0.9365 | 0.9362 | 0.9362 | 0.9365 | | 0.0114 | 10.0 | 5000 | 0.3044 | 0.935 | 0.9349 | 0.9350 | 0.935 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6