--- license: apache-2.0 library_name: peft tags: - code - instruct - mistral datasets: - cognitivecomputations/dolphin-coder base_model: mistralai/Mistral-7B-v0.1 model-index: - name: mistral_7b_DolphinCoder results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 59.73 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/mistral_7b_DolphinCoder name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 81.64 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/mistral_7b_DolphinCoder name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 59.87 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/mistral_7b_DolphinCoder name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 43.95 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/mistral_7b_DolphinCoder name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 74.59 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/mistral_7b_DolphinCoder name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 26.23 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=qblocks/mistral_7b_DolphinCoder name: Open LLM Leaderboard --- ### Finetuning Overview: **Model Used:** mistralai/Mistral-7B-v0.1 **Dataset:** cognitivecomputations/dolphin-coder #### Dataset Insights: [Dolphin-Coder](https://huggingface.co/datasets/cognitivecomputations/dolphin-coder) dataset – a high-quality collection of 100,000+ coding questions and responses. It's perfect for supervised fine-tuning (SFT), and teaching language models to improve on coding-based tasks. #### Finetuning Details: With the utilization of [MonsterAPI](https://monsterapi.ai)'s [no-code LLM finetuner](https://monsterapi.ai/finetuning), this finetuning: - Was achieved with great cost-effectiveness. - Completed in a total duration of 15hr 36mins for 1 epochs using an A6000 48GB GPU. - Costed `$31.51` for the entire 1 epoch. #### Hyperparameters & Additional Details: - **Epochs:** 1 - **Cost Per Epoch:** $31.51 - **Model Path:** mistralai/Mistral-7B-v0.1 - **Learning Rate:** 0.0002 - **Data Split:** 100% train - **Gradient Accumulation Steps:** 128 - **lora r:** 32 - **lora alpha:** 64 ![Train Loss](https://cdn-uploads.huggingface.co/production/uploads/63ba46aa0a9866b28cb19a14/kUDqiPdErxwf8sU-lHwI1.png) --- license: apache-2.0 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_qblocks__mistral_7b_DolphinCoder) | Metric |Value| |---------------------------------|----:| |Avg. |57.67| |AI2 Reasoning Challenge (25-Shot)|59.73| |HellaSwag (10-Shot) |81.64| |MMLU (5-Shot) |59.87| |TruthfulQA (0-shot) |43.95| |Winogrande (5-shot) |74.59| |GSM8k (5-shot) |26.23|