pseudolabeling-step1-F04
This model is a fine-tuned version of yongjian/wav2vec2-large-a on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5392
- Wer: 0.8870
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
21.4261 | 1.71 | 500 | 3.2064 | 1.0 |
2.9275 | 3.42 | 1000 | 2.6461 | 1.2637 |
2.49 | 5.14 | 1500 | 2.0627 | 1.2527 |
1.8582 | 6.85 | 2000 | 1.6367 | 1.1978 |
1.5071 | 8.56 | 2500 | 1.2845 | 1.1743 |
1.2181 | 10.27 | 3000 | 1.1395 | 1.1586 |
1.0386 | 11.99 | 3500 | 1.0155 | 1.0926 |
0.9307 | 13.7 | 4000 | 0.8144 | 1.0628 |
0.8073 | 15.41 | 4500 | 0.7666 | 1.1146 |
0.7209 | 17.12 | 5000 | 0.7020 | 1.0911 |
0.6618 | 18.84 | 5500 | 0.6829 | 1.0612 |
0.6079 | 20.55 | 6000 | 0.6023 | 0.9937 |
0.5242 | 22.26 | 6500 | 0.6057 | 0.9827 |
0.4848 | 23.97 | 7000 | 0.5802 | 0.9435 |
0.4602 | 25.68 | 7500 | 0.5376 | 0.9027 |
0.446 | 27.4 | 8000 | 0.5351 | 0.8964 |
0.4245 | 29.11 | 8500 | 0.5392 | 0.8870 |
Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 1.18.3
- Tokenizers 0.13.2
- Downloads last month
- 1
This model can be loaded on the Inference API on-demand.