{ "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", "version": "0.1.3", "changelog": { "0.1.3": "Add training pipeline for fine-tuning models, support MONAI Label active learning", "0.1.2": "fixed the dimension in convolution according to MONAI 1.0 update", "0.1.1": "fixed the model state dict name", "0.1.0": "complete the model package" }, "monai_version": "1.0.0", "pytorch_version": "1.10.0", "numpy_version": "1.21.2", "optional_packages_version": { "nibabel": "3.2.1", "pytorch-ignite": "0.4.8", "einops": "0.4.1", "fire": "0.4.0", "timm": "0.6.7" }, "task": "Renal segmentation", "description": "A transformer-based model for renal segmentation from CT image", "authors": "Vanderbilt University + MONAI team", "copyright": "Copyright (c) MONAI Consortium", "data_source": "RawData.zip", "data_type": "nibabel", "image_classes": "single channel data, intensity scaled to [0, 1]", "label_classes": "1: Kideny Cortex, 2:Medulla, 3:Pelvicalyceal system", "pred_classes": "1: Kideny Cortex, 2:Medulla, 3:Pelvicalyceal system", "eval_metrics": { "mean_dice": 0.85 }, "intended_use": "This is an example, not to be used for diagnostic purposes", "references": [ "Tang, Yucheng, et al. 'Self-supervised pre-training of swin transformers for 3d medical image analysis. arXiv preprint arXiv:2111.14791 (2021). https://arxiv.org/abs/2111.14791." ], "network_data_format": { "inputs": { "image": { "type": "image", "format": "hounsfield", "modality": "CT", "num_channels": 1, "spatial_shape": [ 96, 96, 96 ], "dtype": "float32", "value_range": [ 0, 1 ], "is_patch_data": true, "channel_def": { "0": "image" } } }, "outputs": { "pred": { "type": "image", "format": "segmentation", "num_channels": 4, "spatial_shape": [ 96, 96, 96 ], "dtype": "float32", "value_range": [ 0, 1 ], "is_patch_data": true, "channel_def": { "0": "background", "1": "kidney cortex", "2": "medulla", "3": "pelvicalyceal system" } } } } }