{ "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", "version": "0.1.4", "changelog": { "0.1.4": "fix the wrong GPU index issue of multi-node", "0.1.3": "remove error dollar symbol in readme", "0.1.2": "add RAM warning", "0.1.1": "enable deterministic eval and inference", "0.1.0": "Update deterministic results", "0.0.9": "Update README Formatting", "0.0.8": "enable deterministic training", "0.0.7": "update benchmark on A100", "0.0.6": "adapt to BundleWorkflow interface", "0.0.5": "add name tag", "0.0.4": "Fix evaluation", "0.0.3": "Update to use MONAI 1.1.0", "0.0.2": "Update The Torch Vision Transform", "0.0.1": "initialize the model package structure" }, "monai_version": "1.2.0", "pytorch_version": "1.13.1", "numpy_version": "1.22.2", "optional_packages_version": { "nibabel": "4.0.1", "pytorch-ignite": "0.4.9", "torchvision": "0.14.1" }, "name": "Pathology nuclei classification", "task": "Pathology Nuclei classification", "description": "A pre-trained model for Nuclei Classification within Haematoxylin & Eosin stained histology images", "authors": "MONAI team", "copyright": "Copyright (c) MONAI Consortium", "data_source": "consep_dataset.zip from https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet", "data_type": "png", "image_classes": "RGB channel data, intensity scaled to [0, 1]", "label_classes": "single channel data", "pred_classes": "4 channels OneHot data, channel 0 is Other, channel 1 is Inflammatory, channel 2 is Epithelial, channel 3 is Spindle-Shaped", "eval_metrics": { "f1_score": 0.852 }, "intended_use": "This is an example, not to be used for diagnostic purposes", "references": [ "S. Graham, Q. D. Vu, S. E. A. Raza, A. Azam, Y-W. Tsang, J. T. Kwak and N. Rajpoot. \"HoVer-Net: Simultaneous Segmentation and Classification of Nuclei in Multi-Tissue Histology Images.\" Medical Image Analysis, Sept. 2019. https://doi.org/10.1016/j.media.2019.101563" ], "network_data_format": { "inputs": { "image": { "type": "magnitude", "format": "RGB", "modality": "regular", "num_channels": 4, "spatial_shape": [ 128, 128 ], "dtype": "float32", "value_range": [ 0, 1 ], "is_patch_data": false, "channel_def": { "0": "R", "1": "G", "2": "B", "3": "Mask" } } }, "outputs": { "pred": { "type": "probabilities", "format": "classes", "num_channels": 4, "spatial_shape": [ 1, 4 ], "dtype": "float32", "value_range": [ 0, 1, 2, 3 ], "is_patch_data": false, "channel_def": { "0": "Other", "1": "Inflammatory", "2": "Epithelial", "3": "Spindle-Shaped" } } } } }