# Copyright (c) MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging from typing import Dict, Mapping, Optional import numpy as np from monai.config import NdarrayOrTensor, PathLike from monai.data import ImageWriter logger = logging.getLogger(__name__) class ClassificationWriter(ImageWriter): def __init__(self, label_index_map: Optional[Dict[str, str]] = None, **kwargs): super().__init__(**kwargs) self.label_index_map = ( label_index_map if label_index_map else {"0": "Other", "1": "Inflammatory", "2": "Epithelial", "3": "Spindle-Shaped"} ) def set_data_array( self, data_array: NdarrayOrTensor, channel_dim: Optional[int] = 0, squeeze_end_dims: bool = True, contiguous: bool = False, **kwargs, ): self.data_obj: np.ndarray = super().create_backend_obj(data_array) def set_metadata(self, meta_dict: Optional[Mapping] = None, resample: bool = True, **options): pass def write(self, filename: PathLike, verbose: bool = False, **kwargs): super().write(filename, verbose=verbose) result = [] for idx, score in enumerate(self.data_obj): name = f"label_{idx}" name = self.label_index_map.get(str(idx)) if self.label_index_map else name if name: result.append({"idx": idx, "label": name, "score": float(score)}) with open(filename, "w") as fp: json.dump(result, fp)