{ "imports": [ "$import glob" ], "bundle_root": ".", "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')", "ckpt_path": "$@bundle_root + '/models/model.pt'", "output_dir": "./outputs", "latent_size": 64, "num_samples": 10, "network_def": { "_target_": "Generator", "latent_shape": "@latent_size", "start_shape": [ 64, 8, 8 ], "channels": [ 32, 16, 8, 1 ], "strides": [ 2, 2, 2, 1 ] }, "network": "$@network_def.to(@device)", "dataset": { "_target_": "Dataset", "data": "$[torch.rand(@latent_size) for i in range(@num_samples)]" }, "dataloader": { "_target_": "DataLoader", "dataset": "@dataset", "batch_size": 1, "shuffle": false, "num_workers": 0 }, "inferer": { "_target_": "SimpleInferer" }, "postprocessing": { "_target_": "Compose", "transforms": [ { "_target_": "Activationsd", "keys": "pred", "sigmoid": true }, { "_target_": "SaveImaged", "keys": "pred", "output_dir": "@output_dir", "output_ext": "png", "separate_folder": false, "scale": 255, "output_dtype": "$np.uint8", "meta_key_postfix": null } ] }, "handlers": [ { "_target_": "CheckpointLoader", "load_path": "@ckpt_path", "load_dict": { "model": "@network" } } ], "evaluator": { "_target_": "SupervisedEvaluator", "device": "@device", "val_data_loader": "@dataloader", "network": "@network", "inferer": "@inferer", "postprocessing": "@postprocessing", "prepare_batch": "$lambda batchdata, *_,**__: (batchdata.to(@device),None,(),{})", "val_handlers": "@handlers" }, "inferring": [ "$@evaluator.run()" ] }