# Copyright (c) MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations from typing import TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from monai.config import IgniteInfo from monai.engines.trainer import Trainer from monai.engines.utils import IterationEvents, default_metric_cmp_fn from monai.inferers import Inferer from monai.transforms import Transform from monai.utils import min_version, optional_import from monai.utils.enums import CommonKeys as Keys from torch.optim.optimizer import Optimizer from torch.utils.data import DataLoader if TYPE_CHECKING: from ignite.engine import Engine, EventEnum from ignite.metrics import Metric else: Engine, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Engine") Metric, _ = optional_import("ignite.metrics", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Metric") EventEnum, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "EventEnum") __all__ = ["DetectionTrainer"] def detection_prepare_batch( batchdata: List[Dict[str, torch.Tensor]], device: Optional[Union[str, torch.device]] = None, non_blocking: bool = False, **kwargs, ) -> Union[Tuple[torch.Tensor, Optional[torch.Tensor]], torch.Tensor]: """ Default function to prepare the data for current iteration. Args `batchdata`, `device`, `non_blocking` refer to the ignite API: https://pytorch.org/ignite/v0.4.8/generated/ignite.engine.create_supervised_trainer.html. `kwargs` supports other args for `Tensor.to()` API. Returns: image, label(optional). """ inputs = [ batch_data_ii["image"].to(device=device, non_blocking=non_blocking, **kwargs) for batch_data_i in batchdata for batch_data_ii in batch_data_i ] if isinstance(batchdata[0][0].get(Keys.LABEL), torch.Tensor): targets = [ dict( label=batch_data_ii["label"].to(device=device, non_blocking=non_blocking, **kwargs), box=batch_data_ii["box"].to(device=device, non_blocking=non_blocking, **kwargs), ) for batch_data_i in batchdata for batch_data_ii in batch_data_i ] return (inputs, targets) return inputs, None class DetectionTrainer(Trainer): """ Supervised detection training method with image and label, inherits from ``Trainer`` and ``Workflow``. Args: device: an object representing the device on which to run. max_epochs: the total epoch number for trainer to run. train_data_loader: Ignite engine use data_loader to run, must be Iterable or torch.DataLoader. detector: detector to train in the trainer, should be regular PyTorch `torch.nn.Module`. optimizer: the optimizer associated to the detector, should be regular PyTorch optimizer from `torch.optim` or its subclass. epoch_length: number of iterations for one epoch, default to `len(train_data_loader)`. non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously with respect to the host. For other cases, this argument has no effect. prepare_batch: function to parse expected data (usually `image`,`box`, `label` and other detector args) from `engine.state.batch` for every iteration, for more details please refer to: https://pytorch.org/ignite/generated/ignite.engine.create_supervised_trainer.html. iteration_update: the callable function for every iteration, expect to accept `engine` and `engine.state.batch` as inputs, return data will be stored in `engine.state.output`. if not provided, use `self._iteration()` instead. for more details please refer to: https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html. inferer: inference method that execute model forward on input data, like: SlidingWindow, etc. postprocessing: execute additional transformation for the model output data. Typically, several Tensor based transforms composed by `Compose`. key_train_metric: compute metric when every iteration completed, and save average value to engine.state.metrics when epoch completed. key_train_metric is the main metric to compare and save the checkpoint into files. additional_metrics: more Ignite metrics that also attach to Ignite Engine. metric_cmp_fn: function to compare current key metric with previous best key metric value, it must accept 2 args (current_metric, previous_best) and return a bool result: if `True`, will update `best_metric` and `best_metric_epoch` with current metric and epoch, default to `greater than`. train_handlers: every handler is a set of Ignite Event-Handlers, must have `attach` function, like: CheckpointHandler, StatsHandler, etc. amp: whether to enable auto-mixed-precision training, default is False. event_names: additional custom ignite events that will register to the engine. new events can be a list of str or `ignite.engine.events.EventEnum`. event_to_attr: a dictionary to map an event to a state attribute, then add to `engine.state`. for more details, check: https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html #ignite.engine.engine.Engine.register_events. decollate: whether to decollate the batch-first data to a list of data after model computation, recommend `decollate=True` when `postprocessing` uses components from `monai.transforms`. default to `True`. optim_set_to_none: when calling `optimizer.zero_grad()`, instead of setting to zero, set the grads to None. more details: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html. to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for `device`, `non_blocking`. amp_kwargs: dict of the args for `torch.cuda.amp.autocast()` API, for more details: https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.autocast. """ def __init__( self, device: torch.device, max_epochs: int, train_data_loader: Iterable | DataLoader, detector: torch.nn.Module, optimizer: Optimizer, epoch_length: int | None = None, non_blocking: bool = False, prepare_batch: Callable = detection_prepare_batch, iteration_update: Callable[[Engine, Any], Any] | None = None, inferer: Inferer | None = None, postprocessing: Transform | None = None, key_train_metric: dict[str, Metric] | None = None, additional_metrics: dict[str, Metric] | None = None, metric_cmp_fn: Callable = default_metric_cmp_fn, train_handlers: Sequence | None = None, amp: bool = False, event_names: list[str | EventEnum] | None = None, event_to_attr: dict | None = None, decollate: bool = True, optim_set_to_none: bool = False, to_kwargs: dict | None = None, amp_kwargs: dict | None = None, ) -> None: super().__init__( device=device, max_epochs=max_epochs, data_loader=train_data_loader, epoch_length=epoch_length, non_blocking=non_blocking, prepare_batch=prepare_batch, iteration_update=iteration_update, postprocessing=postprocessing, key_metric=key_train_metric, additional_metrics=additional_metrics, metric_cmp_fn=metric_cmp_fn, handlers=train_handlers, amp=amp, event_names=event_names, event_to_attr=event_to_attr, decollate=decollate, to_kwargs=to_kwargs, amp_kwargs=amp_kwargs, ) self.detector = detector self.optimizer = optimizer self.optim_set_to_none = optim_set_to_none def _iteration(self, engine, batchdata: dict[str, torch.Tensor]): """ Callback function for the Supervised Training processing logic of 1 iteration in Ignite Engine. Return below items in a dictionary: - IMAGE: image Tensor data for model input, already moved to device. - BOX: box regression loss corresponding to the image, already moved to device. - LABEL: classification loss corresponding to the image, already moved to device. - LOSS: weighted sum of loss values computed by loss function. Args: engine: `DetectionTrainer` to execute operation for an iteration. batchdata: input data for this iteration, usually can be dictionary or tuple of Tensor data. Raises: ValueError: When ``batchdata`` is None. """ if batchdata is None: raise ValueError("Must provide batch data for current iteration.") batch = engine.prepare_batch(batchdata, engine.state.device, engine.non_blocking, **engine.to_kwargs) if len(batch) == 2: inputs, targets = batch args: tuple = () kwargs: dict = {} else: inputs, targets, args, kwargs = batch # put iteration outputs into engine.state engine.state.output = {Keys.IMAGE: inputs, Keys.LABEL: targets} def _compute_pred_loss(w_cls: float = 1.0, w_box_reg: float = 1.0): """ Args: w_cls: weight of classification loss w_box_reg: weight of box regression loss """ outputs = engine.detector(inputs, targets) engine.state.output[engine.detector.cls_key] = outputs[engine.detector.cls_key] engine.state.output[engine.detector.box_reg_key] = outputs[engine.detector.box_reg_key] engine.state.output[Keys.LOSS] = ( w_cls * outputs[engine.detector.cls_key] + w_box_reg * outputs[engine.detector.box_reg_key] ) engine.fire_event(IterationEvents.LOSS_COMPLETED) engine.detector.train() engine.optimizer.zero_grad(set_to_none=engine.optim_set_to_none) if engine.amp and engine.scaler is not None: with torch.cuda.amp.autocast(**engine.amp_kwargs): inputs = [img.to(torch.float16) for img in inputs] _compute_pred_loss() engine.scaler.scale(engine.state.output[Keys.LOSS]).backward() engine.fire_event(IterationEvents.BACKWARD_COMPLETED) engine.scaler.step(engine.optimizer) engine.scaler.update() else: _compute_pred_loss() engine.state.output[Keys.LOSS].backward() engine.fire_event(IterationEvents.BACKWARD_COMPLETED) engine.optimizer.step() return engine.state.output