{ "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", "version": "0.2.0", "changelog": { "0.2.0": "update license files", "0.1.0": "complete the first version model package", "0.0.1": "initialize the model package structure" }, "monai_version": "1.0.0", "pytorch_version": "1.12.0", "numpy_version": "1.22.4", "optional_packages_version": { "nibabel": "4.0.1", "pytorch-ignite": "0.4.9" }, "task": "endoscopic tool segmentation", "description": "A pre-trained binary segmentation model for endoscopic tool segmentation", "authors": "NVIDIA DLMED team", "copyright": "Copyright (c) 2021-2022, NVIDIA CORPORATION", "data_source": "private dataset", "data_type": "RGB", "image_classes": "three channel data, intensity [0-255]", "label_classes": "single channel data, 1/255 is tool, 0 is background", "pred_classes": "2 channels OneHot data, channel 1 is tool, channel 0 is background", "eval_metrics": { "mean_iou": 0.87 }, "references": [ "Tan, M. and Le, Q. V. Efficientnet: Rethinking model scaling for convolutional neural networks. ICML, 2019a. https://arxiv.org/pdf/1905.11946.pdf", "O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234\u2013241. Springer, 2015. https://arxiv.org/pdf/1505.04597.pdf" ], "network_data_format": { "inputs": { "image": { "type": "magnitude", "format": "RGB", "modality": "regular", "num_channels": 3, "spatial_shape": [ 736, 480 ], "dtype": "float32", "value_range": [ 0, 1 ], "is_patch_data": false, "channel_def": { "0": "R", "1": "G", "2": "B" } } }, "outputs": { "pred": { "type": "image", "format": "segmentation", "num_channels": 2, "spatial_shape": [ 736, 480 ], "dtype": "float32", "value_range": [ 0, 1 ], "is_patch_data": false, "channel_def": { "0": "background", "1": "tools" } } } } }