# Copyright (c) MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations from typing import TYPE_CHECKING, Any, Callable, Iterable, Sequence import torch from monai.config import IgniteInfo from monai.engines.utils import IterationEvents, default_metric_cmp_fn, default_prepare_batch from monai.inferers import Inferer, SimpleInferer from monai.transforms import Transform from monai.utils import min_version, optional_import from monai.utils.enums import CommonKeys, GanKeys from torch.optim.optimizer import Optimizer from torch.utils.data import DataLoader if TYPE_CHECKING: from ignite.engine import Engine, EventEnum from ignite.metrics import Metric else: Engine, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Engine") Metric, _ = optional_import("ignite.metrics", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Metric") EventEnum, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "EventEnum") from monai.engines.trainer import SupervisedTrainer, Trainer class VaeGanTrainer(Trainer): """ Generative adversarial network training based on Goodfellow et al. 2014 https://arxiv.org/abs/1406.266, inherits from ``Trainer`` and ``Workflow``. Training Loop: for each batch of data size `m` 1. Generate `m` fakes from random latent codes. 2. Update discriminator with these fakes and current batch reals, repeated d_train_steps times. 3. If g_update_latents, generate `m` fakes from new random latent codes. 4. Update generator with these fakes using discriminator feedback. Args: device: an object representing the device on which to run. max_epochs: the total epoch number for engine to run. train_data_loader: Core ignite engines uses `DataLoader` for training loop batchdata. g_network: generator (G) network architecture. g_optimizer: G optimizer function. g_loss_function: G loss function for optimizer. d_network: discriminator (D) network architecture. d_optimizer: D optimizer function. d_loss_function: D loss function for optimizer. epoch_length: number of iterations for one epoch, default to `len(train_data_loader)`. g_inferer: inference method to execute G model forward. Defaults to ``SimpleInferer()``. d_inferer: inference method to execute D model forward. Defaults to ``SimpleInferer()``. d_train_steps: number of times to update D with real data minibatch. Defaults to ``1``. latent_shape: size of G input latent code. Defaults to ``64``. non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously with respect to the host. For other cases, this argument has no effect. d_prepare_batch: callback function to prepare batchdata for D inferer. Defaults to return ``GanKeys.REALS`` in batchdata dict. for more details please refer to: https://pytorch.org/ignite/generated/ignite.engine.create_supervised_trainer.html. g_prepare_batch: callback function to create batch of latent input for G inferer. Defaults to return random latents. for more details please refer to: https://pytorch.org/ignite/generated/ignite.engine.create_supervised_trainer.html. g_update_latents: Calculate G loss with new latent codes. Defaults to ``True``. iteration_update: the callable function for every iteration, expect to accept `engine` and `engine.state.batch` as inputs, return data will be stored in `engine.state.output`. if not provided, use `self._iteration()` instead. for more details please refer to: https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html. postprocessing: execute additional transformation for the model output data. Typically, several Tensor based transforms composed by `Compose`. key_train_metric: compute metric when every iteration completed, and save average value to engine.state.metrics when epoch completed. key_train_metric is the main metric to compare and save the checkpoint into files. additional_metrics: more Ignite metrics that also attach to Ignite Engine. metric_cmp_fn: function to compare current key metric with previous best key metric value, it must accept 2 args (current_metric, previous_best) and return a bool result: if `True`, will update `best_metric` and `best_metric_epoch` with current metric and epoch, default to `greater than`. train_handlers: every handler is a set of Ignite Event-Handlers, must have `attach` function, like: CheckpointHandler, StatsHandler, etc. decollate: whether to decollate the batch-first data to a list of data after model computation, recommend `decollate=True` when `postprocessing` uses components from `monai.transforms`. default to `True`. optim_set_to_none: when calling `optimizer.zero_grad()`, instead of setting to zero, set the grads to None. more details: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html. to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for `device`, `non_blocking`. amp_kwargs: dict of the args for `torch.cuda.amp.autocast()` API, for more details: https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.autocast. """ def __init__( self, device: str | torch.device, max_epochs: int, train_data_loader: DataLoader, g_network: torch.nn.Module, g_optimizer: Optimizer, g_loss_function: Callable, d_network: torch.nn.Module, d_optimizer: Optimizer, d_loss_function: Callable, epoch_length: int | None = None, g_inferer: Inferer | None = None, d_inferer: Inferer | None = None, d_train_steps: int = 1, latent_shape: int = 64, non_blocking: bool = False, d_prepare_batch: Callable = default_prepare_batch, g_prepare_batch: Callable = default_prepare_batch, g_update_latents: bool = True, iteration_update: Callable[[Engine, Any], Any] | None = None, postprocessing: Transform | None = None, key_train_metric: dict[str, Metric] | None = None, additional_metrics: dict[str, Metric] | None = None, metric_cmp_fn: Callable = default_metric_cmp_fn, train_handlers: Sequence | None = None, decollate: bool = True, optim_set_to_none: bool = False, to_kwargs: dict | None = None, amp_kwargs: dict | None = None, ): if not isinstance(train_data_loader, DataLoader): raise ValueError("train_data_loader must be PyTorch DataLoader.") # set up Ignite engine and environments super().__init__( device=device, max_epochs=max_epochs, data_loader=train_data_loader, epoch_length=epoch_length, non_blocking=non_blocking, prepare_batch=d_prepare_batch, iteration_update=iteration_update, key_metric=key_train_metric, additional_metrics=additional_metrics, metric_cmp_fn=metric_cmp_fn, handlers=train_handlers, postprocessing=postprocessing, decollate=decollate, to_kwargs=to_kwargs, amp_kwargs=amp_kwargs, ) self.g_network = g_network self.g_optimizer = g_optimizer self.g_loss_function = g_loss_function self.g_inferer = SimpleInferer() if g_inferer is None else g_inferer self.d_network = d_network self.d_optimizer = d_optimizer self.d_loss_function = d_loss_function self.d_inferer = SimpleInferer() if d_inferer is None else d_inferer self.d_train_steps = d_train_steps self.latent_shape = latent_shape self.g_prepare_batch = g_prepare_batch self.g_update_latents = g_update_latents self.optim_set_to_none = optim_set_to_none def _iteration( self, engine: VaeGanTrainer, batchdata: dict | Sequence ) -> dict[str, torch.Tensor | int | float | bool]: """ Callback function for Adversarial Training processing logic of 1 iteration in Ignite Engine. Args: engine: `VaeGanTrainer` to execute operation for an iteration. batchdata: input data for this iteration, usually can be dictionary or tuple of Tensor data. Raises: ValueError: must provide batch data for current iteration. """ if batchdata is None: raise ValueError("must provide batch data for current iteration.") d_input = engine.prepare_batch(batchdata, engine.state.device, engine.non_blocking, **engine.to_kwargs)[0] g_input = d_input g_output, z_mu, z_sigma = engine.g_inferer(g_input, engine.g_network) # Train Generator engine.g_optimizer.zero_grad(set_to_none=engine.optim_set_to_none) g_loss = engine.g_loss_function(g_output, g_input, z_mu, z_sigma) g_loss.backward() engine.g_optimizer.step() # Train Discriminator d_total_loss = torch.zeros(1) for _ in range(engine.d_train_steps): engine.d_optimizer.zero_grad(set_to_none=engine.optim_set_to_none) dloss = engine.d_loss_function(g_output, d_input) dloss.backward() engine.d_optimizer.step() d_total_loss += dloss.item() return { GanKeys.REALS: d_input, GanKeys.FAKES: g_output, GanKeys.LATENTS: g_input, GanKeys.GLOSS: g_loss.item(), GanKeys.DLOSS: d_total_loss.item(), } class LDMTrainer(SupervisedTrainer): """ Standard supervised training method with image and label, inherits from ``Trainer`` and ``Workflow``. Args: device: an object representing the device on which to run. max_epochs: the total epoch number for trainer to run. train_data_loader: Ignite engine use data_loader to run, must be Iterable or torch.DataLoader. network: network to train in the trainer, should be regular PyTorch `torch.nn.Module`. optimizer: the optimizer associated to the network, should be regular PyTorch optimizer from `torch.optim` or its subclass. loss_function: the loss function associated to the optimizer, should be regular PyTorch loss, which inherit from `torch.nn.modules.loss`. epoch_length: number of iterations for one epoch, default to `len(train_data_loader)`. non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously with respect to the host. For other cases, this argument has no effect. prepare_batch: function to parse expected data (usually `image`, `label` and other network args) from `engine.state.batch` for every iteration, for more details please refer to: https://pytorch.org/ignite/generated/ignite.engine.create_supervised_trainer.html. iteration_update: the callable function for every iteration, expect to accept `engine` and `engine.state.batch` as inputs, return data will be stored in `engine.state.output`. if not provided, use `self._iteration()` instead. for more details please refer to: https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html. inferer: inference method that execute model forward on input data, like: SlidingWindow, etc. postprocessing: execute additional transformation for the model output data. Typically, several Tensor based transforms composed by `Compose`. key_train_metric: compute metric when every iteration completed, and save average value to engine.state.metrics when epoch completed. key_train_metric is the main metric to compare and save the checkpoint into files. additional_metrics: more Ignite metrics that also attach to Ignite Engine. metric_cmp_fn: function to compare current key metric with previous best key metric value, it must accept 2 args (current_metric, previous_best) and return a bool result: if `True`, will update `best_metric` and `best_metric_epoch` with current metric and epoch, default to `greater than`. train_handlers: every handler is a set of Ignite Event-Handlers, must have `attach` function, like: CheckpointHandler, StatsHandler, etc. amp: whether to enable auto-mixed-precision training, default is False. event_names: additional custom ignite events that will register to the engine. new events can be a list of str or `ignite.engine.events.EventEnum`. event_to_attr: a dictionary to map an event to a state attribute, then add to `engine.state`. for more details, check: https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html #ignite.engine.engine.Engine.register_events. decollate: whether to decollate the batch-first data to a list of data after model computation, recommend `decollate=True` when `postprocessing` uses components from `monai.transforms`. default to `True`. optim_set_to_none: when calling `optimizer.zero_grad()`, instead of setting to zero, set the grads to None. more details: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html. to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for `device`, `non_blocking`. amp_kwargs: dict of the args for `torch.cuda.amp.autocast()` API, for more details: https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.autocast. """ def __init__( self, device: str | torch.device, max_epochs: int, train_data_loader: Iterable | DataLoader, network: torch.nn.Module, autoencoder_model: torch.nn.Module, optimizer: Optimizer, loss_function: Callable, latent_shape: Sequence, inferer: Inferer, epoch_length: int | None = None, non_blocking: bool = False, prepare_batch: Callable = default_prepare_batch, iteration_update: Callable[[Engine, Any], Any] | None = None, postprocessing: Transform | None = None, key_train_metric: dict[str, Metric] | None = None, additional_metrics: dict[str, Metric] | None = None, metric_cmp_fn: Callable = default_metric_cmp_fn, train_handlers: Sequence | None = None, amp: bool = False, event_names: list[str | EventEnum | type[EventEnum]] | None = None, event_to_attr: dict | None = None, decollate: bool = True, optim_set_to_none: bool = False, to_kwargs: dict | None = None, amp_kwargs: dict | None = None, ) -> None: super().__init__( device=device, max_epochs=max_epochs, train_data_loader=train_data_loader, network=network, optimizer=optimizer, loss_function=loss_function, inferer=inferer, optim_set_to_none=optim_set_to_none, epoch_length=epoch_length, non_blocking=non_blocking, prepare_batch=prepare_batch, iteration_update=iteration_update, postprocessing=postprocessing, key_train_metric=key_train_metric, additional_metrics=additional_metrics, metric_cmp_fn=metric_cmp_fn, train_handlers=train_handlers, amp=amp, event_names=event_names, event_to_attr=event_to_attr, decollate=decollate, to_kwargs=to_kwargs, amp_kwargs=amp_kwargs, ) self.latent_shape = latent_shape self.autoencoder_model = autoencoder_model def _iteration(self, engine: LDMTrainer, batchdata: dict[str, torch.Tensor]) -> dict: """ Callback function for the Supervised Training processing logic of 1 iteration in Ignite Engine. Return below items in a dictionary: - IMAGE: image Tensor data for model input, already moved to device. - LABEL: label Tensor data corresponding to the image, already moved to device. - PRED: prediction result of model. - LOSS: loss value computed by loss function. Args: engine: `SupervisedTrainer` to execute operation for an iteration. batchdata: input data for this iteration, usually can be dictionary or tuple of Tensor data. Raises: ValueError: When ``batchdata`` is None. """ if batchdata is None: raise ValueError("Must provide batch data for current iteration.") batch = engine.prepare_batch(batchdata, engine.state.device, engine.non_blocking, **engine.to_kwargs) if len(batch) == 2: images, labels = batch args: tuple = () kwargs: dict = {} else: images, labels, args, kwargs = batch # put iteration outputs into engine.state engine.state.output = {CommonKeys.IMAGE: images} # generate noise noise_shape = [images.shape[0]] + list(self.latent_shape) noise = torch.randn(noise_shape, dtype=images.dtype).to(images.device) engine.state.output = {"noise": noise} # Create timesteps timesteps = torch.randint( 0, engine.inferer.scheduler.num_train_timesteps, (images.shape[0],), device=images.device ).long() def _compute_pred_loss(): # predicted noise engine.state.output[CommonKeys.PRED] = engine.inferer( inputs=images, autoencoder_model=self.autoencoder_model, diffusion_model=engine.network, noise=noise, timesteps=timesteps, ) engine.fire_event(IterationEvents.FORWARD_COMPLETED) # compute loss engine.state.output[CommonKeys.LOSS] = engine.loss_function( engine.state.output[CommonKeys.PRED], noise ).mean() engine.fire_event(IterationEvents.LOSS_COMPLETED) engine.network.train() engine.optimizer.zero_grad(set_to_none=engine.optim_set_to_none) if engine.amp and engine.scaler is not None: with torch.cuda.amp.autocast(**engine.amp_kwargs): _compute_pred_loss() engine.scaler.scale(engine.state.output[CommonKeys.LOSS]).backward() engine.fire_event(IterationEvents.BACKWARD_COMPLETED) engine.scaler.step(engine.optimizer) engine.scaler.update() else: _compute_pred_loss() engine.state.output[CommonKeys.LOSS].backward() engine.fire_event(IterationEvents.BACKWARD_COMPLETED) engine.optimizer.step() engine.fire_event(IterationEvents.MODEL_COMPLETED) return engine.state.output