--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9262123053131559 - name: Recall type: recall value: 0.9380243875153821 - name: F1 type: f1 value: 0.9320809248554913 - name: Accuracy type: accuracy value: 0.9839547555880344 --- # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0617 - Precision: 0.9262 - Recall: 0.9380 - F1: 0.9321 - Accuracy: 0.9840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2465 | 1.0 | 878 | 0.0727 | 0.9175 | 0.9199 | 0.9187 | 0.9808 | | 0.0527 | 2.0 | 1756 | 0.0610 | 0.9245 | 0.9361 | 0.9303 | 0.9834 | | 0.0313 | 3.0 | 2634 | 0.0617 | 0.9262 | 0.9380 | 0.9321 | 0.9840 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.8.0 - Datasets 1.16.1 - Tokenizers 0.10.3