homemade_lo_vi / train.py
moiduy04's picture
Update train.py
95e0aba
raw
history blame
8.27 kB
import os
import torch
import torch.nn as nn
from torch import Tensor
from torch.utils.data import DataLoader, Dataset
import torchmetrics
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
# from datasets import load_dataset
from load_dataset import load_local_dataset
from transformer import get_model
from config import load_config, get_weights_file_path
from validate import run_validation
from tokenizer import get_or_build_local_tokenizer
from pathlib import Path
from dataset import BilingualDataset
from bleu import calculate_bleu_score
from decode_method import greedy_decode
def get_local_dataset_tokenizer(config):
train_ds_raw = load_local_dataset(
dataset_filename='datasets/'+config['dataset']['train_dataset'],
src_lang=config['dataset']['src_lang'],
tgt_lang=config['dataset']['tgt_lang']
)
val_ds_raw = load_local_dataset(
dataset_filename='datasets/'+config['dataset']['validate_dataset'],
src_lang=config['dataset']['src_lang'],
tgt_lang=config['dataset']['tgt_lang']
)
src_tokenizer = get_or_build_local_tokenizer(
config=config,
ds=train_ds_raw + val_ds_raw,
lang=config['dataset']['src_lang'],
tokenizer_type=config['dataset']['src_tokenizer']
)
tgt_tokenizer = get_or_build_local_tokenizer(
config=config,
ds=train_ds_raw + val_ds_raw,
lang=config['dataset']['tgt_lang'],
tokenizer_type=config['dataset']['tgt_tokenizer']
)
train_ds = BilingualDataset(
ds=train_ds_raw,
src_tokenizer=src_tokenizer,
tgt_tokenizer=tgt_tokenizer,
src_lang=config['dataset']['src_lang'],
tgt_lang=config['dataset']['tgt_lang'],
src_max_seq_len=config['dataset']['src_max_seq_len'],
tgt_max_seq_len=config['dataset']['tgt_max_seq_len'],
)
val_ds = BilingualDataset(
ds=val_ds_raw,
src_tokenizer=src_tokenizer,
tgt_tokenizer=tgt_tokenizer,
src_lang=config['dataset']['src_lang'],
tgt_lang=config['dataset']['tgt_lang'],
src_max_seq_len=config['dataset']['src_max_seq_len'],
tgt_max_seq_len=config['dataset']['tgt_max_seq_len'],
)
src_max_seq_len = 0
tgt_max_seq_len = 0
for item in (train_ds_raw + val_ds_raw):
src_ids = src_tokenizer.encode(item['translation'][config['dataset']['src_lang']]).ids
tgt_ids = tgt_tokenizer.encode(item['translation'][config['dataset']['tgt_lang']]).ids
src_max_seq_len = max(src_max_seq_len, len(src_ids))
tgt_max_seq_len = max(tgt_max_seq_len, len(tgt_ids))
print(f'Max length of source sequence: {src_max_seq_len}')
print(f'Max length of target sequence: {tgt_max_seq_len}')
train_dataloader = DataLoader(train_ds, batch_size=config['train']['batch_size'], shuffle=True)
val_dataloader = DataLoader(val_ds, batch_size=1, shuffle=True)
return train_dataloader, val_dataloader, src_tokenizer, tgt_tokenizer
def train_model(config):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f'Using device {device}')
Path(config['model']['model_folder']).mkdir(parents=True, exist_ok=True)
train_dataloader, val_dataloader, src_tokenizer, tgt_tokenizer = get_local_dataset_tokenizer(config)
model = get_model(config, src_tokenizer.get_vocab_size(), tgt_tokenizer.get_vocab_size()).to(device)
print(f'{src_tokenizer.get_vocab_size()}, {tgt_tokenizer.get_vocab_size()}')
#Tensorboard
writer = SummaryWriter(config['experiment_name'])
optimizer = torch.optim.Adam(model.parameters(), lr=config['train']['lr'], eps=1e-9)
from transformers import get_linear_schedule_with_warmup
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=config['train']['warm_up_steps'],
num_training_steps=len(train_dataloader) * config['train']['num_epochs']+1
)
initial_epoch = 0
global_step = 0
if config['model']['preload']:
model_filename = get_weights_file_path(config, config['model']['preload'])
print(f'Preloading model from {model_filename}')
state = torch.load(model_filename, map_location=device)
initial_epoch = state['epoch']+1
model.load_state_dict(state['model_state_dict'])
optimizer.load_state_dict(state['optimizer_state_dict'])
scheduler.load_state_dict(state['scheduler_state_dict'])
global_step = state['global_step']
loss_fn = nn.CrossEntropyLoss(
ignore_index=src_tokenizer.token_to_id('<pad>'),
label_smoothing=config['train']['label_smoothing'],
).to(device)
print(f"Training model with {model.count_parameters()} params.")
patience = config['train']['patience']
best_state = {
'model_state_dict': model.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': 9999999.99
}
for epoch in range(initial_epoch, config['train']['num_epochs']):
batch_iterator = tqdm(train_dataloader, desc=f'Proceesing epoch {epoch:02d}')
for batch in batch_iterator:
model.train()
encoder_input = batch['encoder_input'].to(device) # (batch, seq_len)
decoder_input = batch['decoder_input'].to(device) # (batch. seq_len)
encoder_mask = batch['encoder_mask'].to(device) # (batch, 1, 1, seq_len)
decoder_mask = batch['decoder_mask'].to(device) # (batch, 1, seq_len, seq_len)
encoder_output = model.encode(encoder_input, encoder_mask) # (batch, seq_len, d_model)
decoder_output, attn = model.decode(encoder_output, encoder_mask, decoder_input, decoder_mask) # (batch, seq_len, d_model)
proj_output = model.project(decoder_output) # (batch, seq_len, tgt_vocab_size)
label = batch['label'].to(device) # (batch, seq_len)
loss = loss_fn(proj_output.view(-1, tgt_tokenizer.get_vocab_size()), label.view(-1))
batch_iterator.set_postfix({f"loss":f"{loss.item():6.3f}"})
writer.add_scalar('train_loss', loss.item(), global_step)
writer.flush()
global_step += 1
if global_step % patience == 0:
if loss > best_state['loss']:
model.load_state_dict(best_state['model_state_dict'])
optimizer.load_state_dict(best_state['optimizer_state_dict'])
scheduler.load_state_dict(best_state['scheduler_state_dict'])
continue
else:
best_state = {
'model_state_dict': model.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': 9999999.99
}
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
run_validation(model, val_dataloader, src_tokenizer, tgt_tokenizer, device, lambda msg: batch_iterator.write(msg), global_step, writer)
model_filename = get_weights_file_path(config, f'{epoch:02d}')
torch.save({
'epoch': epoch,
'model_state_dict': best_state['model_state_dict'],
'scheduler_state_dict': best_state['scheduler_state_dict'],
'optimizer_state_dict': best_state['optimizer_state_dict'],
'global_step': global_step,
}, model_filename)
# print(f"Bleu score: {calculate_bleu_score(model, val_dataloader, src_tokenizer, tgt_tokenizer, device)}")
if config['train']['on_colab']:
# if (epoch % 5) == 0:
# model_zip_filename = f'model_epoch_{epoch}.zip'
# os.system(f'zip -r {model_zip_filename} /content/silver-spoon/weights')
runs_zip_filename = f'runs_epoch_{epoch}.zip'
os.system(f"zip -r {runs_zip_filename} /content/silver-spoon/{config['experiment_name']}")
if __name__ == '__main__':
config = load_config(file_name='/config/config_final.yaml')
train_model(config)