--- license: mit library_name: peft tags: - generated_from_trainer base_model: microsoft/phi-2 model-index: - name: phi-2-finetuned-labeledsbc results: [] --- # phi-2-finetuned-labeledsbc This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4040 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.4053 | 1.0 | 6 | 3.1734 | | 2.7973 | 2.0 | 12 | 2.3825 | | 2.0487 | 3.0 | 18 | 1.8269 | | 1.6066 | 4.0 | 24 | 1.5462 | | 1.3941 | 5.0 | 30 | 1.3882 | | 1.2595 | 6.0 | 36 | 1.2367 | | 1.1104 | 7.0 | 42 | 1.1045 | | 0.988 | 8.0 | 48 | 1.0010 | | 0.8834 | 9.0 | 54 | 0.9122 | | 0.7908 | 10.0 | 60 | 0.8344 | | 0.7069 | 11.0 | 66 | 0.7794 | | 0.6332 | 12.0 | 72 | 0.7276 | | 0.5627 | 13.0 | 78 | 0.6681 | | 0.5072 | 14.0 | 84 | 0.6246 | | 0.4579 | 15.0 | 90 | 0.5930 | | 0.4278 | 16.0 | 96 | 0.5549 | | 0.3945 | 17.0 | 102 | 0.5336 | | 0.3596 | 18.0 | 108 | 0.5108 | | 0.3248 | 19.0 | 114 | 0.4835 | | 0.3066 | 20.0 | 120 | 0.4727 | | 0.2909 | 21.0 | 126 | 0.4453 | | 0.2661 | 22.0 | 132 | 0.4450 | | 0.2521 | 23.0 | 138 | 0.4278 | | 0.2474 | 24.0 | 144 | 0.4186 | | 0.2439 | 25.0 | 150 | 0.4247 | | 0.2377 | 26.0 | 156 | 0.4125 | | 0.2271 | 27.0 | 162 | 0.4085 | | 0.2144 | 28.0 | 168 | 0.4112 | | 0.2085 | 29.0 | 174 | 0.4065 | | 0.2118 | 30.0 | 180 | 0.4111 | | 0.2088 | 31.0 | 186 | 0.4080 | | 0.1983 | 32.0 | 192 | 0.4068 | | 0.1966 | 33.0 | 198 | 0.4018 | | 0.1921 | 34.0 | 204 | 0.4007 | | 0.1928 | 35.0 | 210 | 0.3933 | | 0.1893 | 36.0 | 216 | 0.3919 | | 0.185 | 37.0 | 222 | 0.3996 | | 0.1762 | 38.0 | 228 | 0.4016 | | 0.1812 | 39.0 | 234 | 0.4052 | | 0.1785 | 40.0 | 240 | 0.4008 | | 0.173 | 41.0 | 246 | 0.4009 | | 0.1748 | 42.0 | 252 | 0.4010 | | 0.1745 | 43.0 | 258 | 0.4023 | | 0.1765 | 44.0 | 264 | 0.4003 | | 0.1748 | 45.0 | 270 | 0.4014 | | 0.1809 | 46.0 | 276 | 0.4020 | | 0.1698 | 47.0 | 282 | 0.4028 | | 0.1691 | 48.0 | 288 | 0.4037 | | 0.174 | 49.0 | 294 | 0.4040 | | 0.1656 | 50.0 | 300 | 0.4040 | ### Framework versions - PEFT 0.10.0 - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.2