5.25 kB
--- | |
language: ar | |
datasets: | |
- common_voice | |
- arabic_speech_corpus | |
metrics: | |
- wer | |
tags: | |
- audio | |
- automatic-speech-recognition | |
- speech | |
- xlsr-fine-tuning-week | |
license: apache-2.0 | |
model-index: | |
- name: Mohammed XLSR Wav2Vec2 Large 53 | |
results: | |
- task: | |
name: Speech Recognition | |
type: automatic-speech-recognition | |
dataset: | |
name: Common Voice ar | |
type: common_voice | |
args: ar | |
metrics: | |
- name: Test WER | |
type: wer | |
value: 36.69 | |
- name: Validation WER | |
type: wer | |
value: 36.69 | |
--- | |
# Wav2Vec2-Large-XLSR-53-Arabic | |
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) | |
on Arabic using the `train` splits of [Common Voice](https://huggingface.co/datasets/common_voice) | |
and [Arabic Speech Corpus](https://huggingface.co/datasets/arabic_speech_corpus). | |
When using this model, make sure that your speech input is sampled at 16kHz. | |
## Usage | |
The model can be used directly (without a language model) as follows: | |
```python | |
%%capture | |
!pip install datasets | |
!pip install transformers==4.4.0 | |
!pip install torchaudio | |
!pip install jiwer | |
!pip install tnkeeh | |
import torch | |
import torchaudio | |
from datasets import load_dataset | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
test_dataset = load_dataset("common_voice", "ar", split="test[:2%]") | |
processor = Wav2Vec2Processor.from_pretrained("mohammed/ar") | |
model = Wav2Vec2ForCTC.from_pretrained("mohammed/ar") | |
resampler = torchaudio.transforms.Resample(48_000, 16_000) | |
# Preprocessing the datasets. | |
# We need to read the audio files as arrays | |
def speech_file_to_array_fn(batch): | |
speech_array, sampling_rate = torchaudio.load(batch["path"]) | |
batch["speech"] = resampler(speech_array).squeeze().numpy() | |
return batch | |
test_dataset = test_dataset.map(speech_file_to_array_fn) | |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) | |
with torch.no_grad(): | |
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
print("The predicted sentence is: ", processor.batch_decode(predicted_ids)) | |
print("The original sentence is:", test_dataset["sentence"][:2]) | |
``` | |
The output is: | |
``` | |
The predicted sentence is : ['ألديك قلم', 'ليست نارك مكسافة على هذه الأرض أبعد من يوم أمس'] | |
The original sentence is: ['ألديك قلم ؟', 'ليست هناك مسافة على هذه الأرض أبعد من يوم أمس.'] | |
``` | |
## Evaluation | |
The model can be evaluated as follows on the Arabic test data of Common Voice: | |
```python | |
import torch | |
import torchaudio | |
from datasets import load_dataset, load_metric | |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
import re | |
# creating a dictionary with all diacritics | |
dict = { | |
'ِ': '', | |
'ُ': '', | |
'ٓ': '', | |
'ٰ': '', | |
'ْ': '', | |
'ٌ': '', | |
'ٍ': '', | |
'ً': '', | |
'ّ': '', | |
'َ': '', | |
'~': '', | |
',': '', | |
'ـ': '', | |
'—': '', | |
'.': '', | |
'!': '', | |
'-': '', | |
';': '', | |
':': '', | |
'\'': '', | |
'"': '', | |
'☭': '', | |
'«': '', | |
'»': '', | |
'؛': '', | |
'ـ': '', | |
'_': '', | |
'،': '', | |
'“': '', | |
'%': '', | |
'‘': '', | |
'”': '', | |
'�': '', | |
'_': '', | |
',': '', | |
'?': '', | |
'#': '', | |
'‘': '', | |
'.': '', | |
'؛': '', | |
'get': '', | |
'؟': '', | |
' ': ' ', | |
'\'ۖ ': '', | |
'\'': '', | |
'\'ۚ' : '', | |
' \'': '', | |
'31': '', | |
'24': '', | |
'39': '' | |
} | |
# replacing multiple diacritics using dictionary (stackoverflow is amazing) | |
def remove_special_characters(batch): | |
# Create a regular expression from the dictionary keys | |
regex = re.compile("(%s)" % "|".join(map(re.escape, dict.keys()))) | |
# For each match, look-up corresponding value in dictionary | |
batch["sentence"] = regex.sub(lambda mo: dict[mo.string[mo.start():mo.end()]], batch["sentence"]) | |
return batch | |
test_dataset = load_dataset("common_voice", "ar", split="test") | |
wer = load_metric("wer") | |
processor = Wav2Vec2Processor.from_pretrained("mohammed/ar") | |
model = Wav2Vec2ForCTC.from_pretrained("mohammed/ar") | |
model.to("cuda") | |
resampler = torchaudio.transforms.Resample(48_000, 16_000) | |
# Preprocessing the datasets. | |
# We need to read the audio files as arrays | |
def speech_file_to_array_fn(batch): | |
speech_array, sampling_rate = torchaudio.load(batch["path"]) | |
batch["speech"] = resampler(speech_array).squeeze().numpy() | |
return batch | |
test_dataset = test_dataset.map(speech_file_to_array_fn) | |
test_dataset = test_dataset.map(remove_special_characters) | |
# Preprocessing the datasets. | |
# We need to read the audio files as arrays | |
def evaluate(batch): | |
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) | |
with torch.no_grad(): | |
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits | |
pred_ids = torch.argmax(logits, dim=-1) | |
batch["pred_strings"] = processor.batch_decode(pred_ids) | |
return batch | |
result = test_dataset.map(evaluate, batched=True, batch_size=8) | |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) | |
``` | |
**Test Result**: 36.69% | |
## Future Work | |
One can use *data augmentation*, *transliteration*, or *attention_mask* to increase the accuracy. | |