--- license: apache-2.0 tags: - generated_from_trainer datasets: - nyu-mll/glue metrics: - matthews_correlation model-index: - name: bert-base-uncased-finetuned-cola results: - task: type: text-classification name: Text Classification dataset: name: glue type: glue args: cola metrics: - type: matthews_correlation value: 0.5905946625710334 name: Matthews Correlation --- # bert-base-uncased-finetuned-cola This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7445 - Matthews Correlation: 0.5906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4926 | 1.0 | 535 | 0.5155 | 0.4941 | | 0.2971 | 2.0 | 1070 | 0.5561 | 0.5320 | | 0.1947 | 3.0 | 1605 | 0.7230 | 0.5677 | | 0.1293 | 4.0 | 2140 | 0.7445 | 0.5906 | | 0.0867 | 5.0 | 2675 | 0.8836 | 0.5788 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1