--- base_model: meta-llama/Meta-Llama-3-8B library_name: peft license: llama3 tags: - trl - sft - generated_from_trainer model-index: - name: MedLLAMA results: [] --- [Visualize in Weights & Biases](https://wandb.ai/jules-guyet-epita/huggingface/runs/tordl6yj) # MedLLAMA This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1988 | 0.6000 | 2435 | 0.9183 | | 0.7397 | 1.2001 | 4870 | 0.9037 | | 0.646 | 1.8001 | 7305 | 0.8777 | | 0.8205 | 2.4002 | 9740 | 0.8819 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - _load_in_8bit: False - _load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 - bnb_4bit_quant_storage: uint8 - load_in_4bit: True - load_in_8bit: False ### Framework versions - PEFT 0.6.2