---
license: mit
train: false
inference: false
pipeline_tag: text-generation
model-index:
- name: aanaphi2-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 63.91
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mobiuslabsgmbh/aanaphi2-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 77.97
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mobiuslabsgmbh/aanaphi2-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 57.73
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mobiuslabsgmbh/aanaphi2-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 51.56
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mobiuslabsgmbh/aanaphi2-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 73.64
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mobiuslabsgmbh/aanaphi2-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 54.89
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mobiuslabsgmbh/aanaphi2-v0.1
name: Open LLM Leaderboard
---
*aanaphi2-v0.1* is a finetuned (SFT + DPO) chat model based on Microsoft's Phi-2 base model (2.8B parameters).
![image/gif](https://cdn-uploads.huggingface.co/production/uploads/636b945ef575d3705149e982/pIeboaaroFY5fpomUADrS.gif)
## Performance
| Models | phi-2 | aanaphi2-v0.1 |
|-------------------|------------------|------------------|
| ARC (25-shot) | 61.09 | 63.74 |
| HellaSwag (10-shot)| 75.11 | 78.30 |
| MMLU (5-shot) | 58.11 | 57.70 |
| TruthfulQA-MC2 | 44.47 | 51.56 |
| Winogrande (5-shot)| 74.35 | 73.40 |
| GSM8K (5-shot) | 54.81 | 58.61 |
| Average | 61.33 | 63.89 |
## Installation
Make sure you have the latest version of the transformers library:
```
pip install pip --upgrade && pip install transformers --upgrade
```
## Basic Usage
``` Python
#Load model
import transformers, torch
compute_dtype = torch.float16
cache_path = ''
device = 'cuda'
model_id = "mobiuslabsgmbh/aanaphi2-v0.1"
model = transformers.AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=compute_dtype,
cache_dir=cache_path,
device_map=device)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, cache_dir=cache_path)
#Set Prompt format
instruction_template = "### Human: "
response_template = "### Assistant: "
def prompt_format(prompt):
out = instruction_template + prompt + '\n' + response_template
return out
model.eval();
@torch.no_grad()
def generate(prompt, max_length=1024):
prompt_chat = prompt_format(prompt)
inputs = tokenizer(prompt_chat, return_tensors="pt", return_attention_mask=True).to('cuda')
outputs = model.generate(**inputs, max_length=max_length, eos_token_id= tokenizer.eos_token_id)
text = tokenizer.batch_decode(outputs[:,:-1])[0]
return text
#Generate
print(generate('If A+B=C and B=C, what would be the value of A?'))
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mobiuslabsgmbh__aanaphi2-v0.1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |63.28|
|AI2 Reasoning Challenge (25-Shot)|63.91|
|HellaSwag (10-Shot) |77.97|
|MMLU (5-Shot) |57.73|
|TruthfulQA (0-shot) |51.56|
|Winogrande (5-shot) |73.64|
|GSM8k (5-shot) |54.89|