--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.79 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8742 - Accuracy: 0.79 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2265 | 1.0 | 57 | 2.1424 | 0.41 | | 1.7837 | 2.0 | 114 | 1.6990 | 0.54 | | 1.4838 | 3.0 | 171 | 1.4898 | 0.63 | | 1.3231 | 4.0 | 228 | 1.2616 | 0.7 | | 1.1623 | 5.0 | 285 | 1.1048 | 0.75 | | 1.043 | 6.0 | 342 | 1.0032 | 0.77 | | 0.9029 | 7.0 | 399 | 0.9896 | 0.76 | | 0.8869 | 8.0 | 456 | 0.8895 | 0.81 | | 0.8797 | 9.0 | 513 | 0.8821 | 0.8 | | 0.8542 | 10.0 | 570 | 0.8742 | 0.79 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0