import collections.abc as collections
import json
import os
import warnings
from pathlib import Path
from shutil import copytree
from typing import Any, Dict, List, Optional, Union
from huggingface_hub import ModelHubMixin, snapshot_download
from huggingface_hub.utils import (
get_tf_version,
is_graphviz_available,
is_pydot_available,
is_tf_available,
yaml_dump,
)
from .constants import CONFIG_NAME
from .hf_api import HfApi
from .utils import SoftTemporaryDirectory, logging, validate_hf_hub_args
logger = logging.get_logger(__name__)
if is_tf_available():
import tensorflow as tf # type: ignore
def _flatten_dict(dictionary, parent_key=""):
"""Flatten a nested dictionary.
Reference: https://stackoverflow.com/a/6027615/10319735
Args:
dictionary (`dict`):
The nested dictionary to be flattened.
parent_key (`str`):
The parent key to be prefixed to the children keys.
Necessary for recursing over the nested dictionary.
Returns:
The flattened dictionary.
"""
items = []
for key, value in dictionary.items():
new_key = f"{parent_key}.{key}" if parent_key else key
if isinstance(value, collections.MutableMapping):
items.extend(
_flatten_dict(
value,
new_key,
).items()
)
else:
items.append((new_key, value))
return dict(items)
def _create_hyperparameter_table(model):
"""Parse hyperparameter dictionary into a markdown table."""
if model.optimizer is not None:
optimizer_params = model.optimizer.get_config()
# flatten the configuration
optimizer_params = _flatten_dict(optimizer_params)
optimizer_params["training_precision"] = tf.keras.mixed_precision.global_policy().name
table = "| Hyperparameters | Value |\n| :-- | :-- |\n"
for key, value in optimizer_params.items():
table += f"| {key} | {value} |\n"
else:
table = None
return table
def _plot_network(model, save_directory):
tf.keras.utils.plot_model(
model,
to_file=f"{save_directory}/model.png",
show_shapes=False,
show_dtype=False,
show_layer_names=True,
rankdir="TB",
expand_nested=False,
dpi=96,
layer_range=None,
)
def _create_model_card(
model,
repo_dir: Path,
plot_model: bool = True,
metadata: Optional[dict] = None,
):
"""
Creates a model card for the repository.
Do not overwrite an existing README.md file.
"""
readme_path = repo_dir / "README.md"
if readme_path.exists():
return
hyperparameters = _create_hyperparameter_table(model)
if plot_model and is_graphviz_available() and is_pydot_available():
_plot_network(model, repo_dir)
if metadata is None:
metadata = {}
metadata["library_name"] = "keras"
model_card: str = "---\n"
model_card += yaml_dump(metadata, default_flow_style=False)
model_card += "---\n"
model_card += "\n## Model description\n\nMore information needed\n"
model_card += "\n## Intended uses & limitations\n\nMore information needed\n"
model_card += "\n## Training and evaluation data\n\nMore information needed\n"
if hyperparameters is not None:
model_card += "\n## Training procedure\n"
model_card += "\n### Training hyperparameters\n"
model_card += "\nThe following hyperparameters were used during training:\n\n"
model_card += hyperparameters
model_card += "\n"
if plot_model and os.path.exists(f"{repo_dir}/model.png"):
model_card += "\n ## Model Plot\n"
model_card += "\n"
model_card += "\nView Model Plot
\n"
path_to_plot = "./model.png"
model_card += f"\n![Model Image]({path_to_plot})\n"
model_card += "\n "
readme_path.write_text(model_card)
def save_pretrained_keras(
model,
save_directory: Union[str, Path],
config: Optional[Dict[str, Any]] = None,
include_optimizer: bool = False,
plot_model: bool = True,
tags: Optional[Union[list, str]] = None,
**model_save_kwargs,
):
"""
Saves a Keras model to save_directory in SavedModel format. Use this if
you're using the Functional or Sequential APIs.
Args:
model (`Keras.Model`):
The [Keras
model](https://www.tensorflow.org/api_docs/python/tf/keras/Model)
you'd like to save. The model must be compiled and built.
save_directory (`str` or `Path`):
Specify directory in which you want to save the Keras model.
config (`dict`, *optional*):
Configuration object to be saved alongside the model weights.
include_optimizer(`bool`, *optional*, defaults to `False`):
Whether or not to include optimizer in serialization.
plot_model (`bool`, *optional*, defaults to `True`):
Setting this to `True` will plot the model and put it in the model
card. Requires graphviz and pydot to be installed.
tags (Union[`str`,`list`], *optional*):
List of tags that are related to model or string of a single tag. See example tags
[here](https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1).
model_save_kwargs(`dict`, *optional*):
model_save_kwargs will be passed to
[`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model).
"""
if is_tf_available():
import tensorflow as tf
else:
raise ImportError("Called a Tensorflow-specific function but could not import it.")
if not model.built:
raise ValueError("Model should be built before trying to save")
save_directory = Path(save_directory)
save_directory.mkdir(parents=True, exist_ok=True)
# saving config
if config:
if not isinstance(config, dict):
raise RuntimeError(f"Provided config to save_pretrained_keras should be a dict. Got: '{type(config)}'")
with (save_directory / CONFIG_NAME).open("w") as f:
json.dump(config, f)
metadata = {}
if isinstance(tags, list):
metadata["tags"] = tags
elif isinstance(tags, str):
metadata["tags"] = [tags]
task_name = model_save_kwargs.pop("task_name", None)
if task_name is not None:
warnings.warn(
"`task_name` input argument is deprecated. Pass `tags` instead.",
FutureWarning,
)
if "tags" in metadata:
metadata["tags"].append(task_name)
else:
metadata["tags"] = [task_name]
if model.history is not None:
if model.history.history != {}:
path = save_directory / "history.json"
if path.exists():
warnings.warn(
"`history.json` file already exists, it will be overwritten by the history of this version.",
UserWarning,
)
with path.open("w", encoding="utf-8") as f:
json.dump(model.history.history, f, indent=2, sort_keys=True)
_create_model_card(model, save_directory, plot_model, metadata)
tf.keras.models.save_model(model, save_directory, include_optimizer=include_optimizer, **model_save_kwargs)
def from_pretrained_keras(*args, **kwargs) -> "KerasModelHubMixin":
r"""
Instantiate a pretrained Keras model from a pre-trained model from the Hub.
The model is expected to be in `SavedModel` format.
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
Can be either:
- A string, the `model id` of a pretrained model hosted inside a
model repo on huggingface.co. Valid model ids can be located
at the root-level, like `bert-base-uncased`, or namespaced
under a user or organization name, like
`dbmdz/bert-base-german-cased`.
- You can add `revision` by appending `@` at the end of model_id
simply like this: `dbmdz/bert-base-german-cased@main` Revision
is the specific model version to use. It can be a branch name,
a tag name, or a commit id, since we use a git-based system
for storing models and other artifacts on huggingface.co, so
`revision` can be any identifier allowed by git.
- A path to a `directory` containing model weights saved using
[`~transformers.PreTrainedModel.save_pretrained`], e.g.,
`./my_model_directory/`.
- `None` if you are both providing the configuration and state
dictionary (resp. with keyword arguments `config` and
`state_dict`).
force_download (`bool`, *optional*, defaults to `False`):
Whether to force the (re-)download of the model weights and
configuration files, overriding the cached versions if they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether to delete incompletely received files. Will attempt to
resume the download if such a file exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g.,
`{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The
proxies are used on each request.
token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. If
`True`, will use the token generated when running `transformers-cli
login` (stored in `~/.huggingface`).
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory in which a downloaded pretrained model
configuration should be cached if the standard cache should not be
used.
local_files_only(`bool`, *optional*, defaults to `False`):
Whether to only look at local files (i.e., do not try to download
the model).
model_kwargs (`Dict`, *optional*):
model_kwargs will be passed to the model during initialization
Passing `token=True` is required when you want to use a private
model.
"""
return KerasModelHubMixin.from_pretrained(*args, **kwargs)
@validate_hf_hub_args
def push_to_hub_keras(
model,
repo_id: str,
*,
config: Optional[dict] = None,
commit_message: str = "Push Keras model using huggingface_hub.",
private: bool = False,
api_endpoint: Optional[str] = None,
token: Optional[str] = None,
branch: Optional[str] = None,
create_pr: Optional[bool] = None,
allow_patterns: Optional[Union[List[str], str]] = None,
ignore_patterns: Optional[Union[List[str], str]] = None,
delete_patterns: Optional[Union[List[str], str]] = None,
log_dir: Optional[str] = None,
include_optimizer: bool = False,
tags: Optional[Union[list, str]] = None,
plot_model: bool = True,
**model_save_kwargs,
):
"""
Upload model checkpoint to the Hub.
Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use
`delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more
details.
Args:
model (`Keras.Model`):
The [Keras model](`https://www.tensorflow.org/api_docs/python/tf/keras/Model`) you'd like to push to the
Hub. The model must be compiled and built.
repo_id (`str`):
ID of the repository to push to (example: `"username/my-model"`).
commit_message (`str`, *optional*, defaults to "Add Keras model"):
Message to commit while pushing.
private (`bool`, *optional*, defaults to `False`):
Whether the repository created should be private.
api_endpoint (`str`, *optional*):
The API endpoint to use when pushing the model to the hub.
token (`str`, *optional*):
The token to use as HTTP bearer authorization for remote files. If
not set, will use the token set when logging in with
`huggingface-cli login` (stored in `~/.huggingface`).
branch (`str`, *optional*):
The git branch on which to push the model. This defaults to
the default branch as specified in your repository, which
defaults to `"main"`.
create_pr (`boolean`, *optional*):
Whether or not to create a Pull Request from `branch` with that commit.
Defaults to `False`.
config (`dict`, *optional*):
Configuration object to be saved alongside the model weights.
allow_patterns (`List[str]` or `str`, *optional*):
If provided, only files matching at least one pattern are pushed.
ignore_patterns (`List[str]` or `str`, *optional*):
If provided, files matching any of the patterns are not pushed.
delete_patterns (`List[str]` or `str`, *optional*):
If provided, remote files matching any of the patterns will be deleted from the repo.
log_dir (`str`, *optional*):
TensorBoard logging directory to be pushed. The Hub automatically
hosts and displays a TensorBoard instance if log files are included
in the repository.
include_optimizer (`bool`, *optional*, defaults to `False`):
Whether or not to include optimizer during serialization.
tags (Union[`list`, `str`], *optional*):
List of tags that are related to model or string of a single tag. See example tags
[here](https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1).
plot_model (`bool`, *optional*, defaults to `True`):
Setting this to `True` will plot the model and put it in the model
card. Requires graphviz and pydot to be installed.
model_save_kwargs(`dict`, *optional*):
model_save_kwargs will be passed to
[`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model).
Returns:
The url of the commit of your model in the given repository.
"""
api = HfApi(endpoint=api_endpoint)
repo_id = api.create_repo(repo_id=repo_id, token=token, private=private, exist_ok=True).repo_id
# Push the files to the repo in a single commit
with SoftTemporaryDirectory() as tmp:
saved_path = Path(tmp) / repo_id
save_pretrained_keras(
model,
saved_path,
config=config,
include_optimizer=include_optimizer,
tags=tags,
plot_model=plot_model,
**model_save_kwargs,
)
# If `log_dir` provided, delete remote logs and upload new ones
if log_dir is not None:
delete_patterns = (
[]
if delete_patterns is None
else (
[delete_patterns] # convert `delete_patterns` to a list
if isinstance(delete_patterns, str)
else delete_patterns
)
)
delete_patterns.append("logs/*")
copytree(log_dir, saved_path / "logs")
return api.upload_folder(
repo_type="model",
repo_id=repo_id,
folder_path=saved_path,
commit_message=commit_message,
token=token,
revision=branch,
create_pr=create_pr,
allow_patterns=allow_patterns,
ignore_patterns=ignore_patterns,
delete_patterns=delete_patterns,
)
class KerasModelHubMixin(ModelHubMixin):
"""
Implementation of [`ModelHubMixin`] to provide model Hub upload/download
capabilities to Keras models.
```python
>>> import tensorflow as tf
>>> from huggingface_hub import KerasModelHubMixin
>>> class MyModel(tf.keras.Model, KerasModelHubMixin):
... def __init__(self, **kwargs):
... super().__init__()
... self.config = kwargs.pop("config", None)
... self.dummy_inputs = ...
... self.layer = ...
... def call(self, *args):
... return ...
>>> # Initialize and compile the model as you normally would
>>> model = MyModel()
>>> model.compile(...)
>>> # Build the graph by training it or passing dummy inputs
>>> _ = model(model.dummy_inputs)
>>> # Save model weights to local directory
>>> model.save_pretrained("my-awesome-model")
>>> # Push model weights to the Hub
>>> model.push_to_hub("my-awesome-model")
>>> # Download and initialize weights from the Hub
>>> model = MyModel.from_pretrained("username/super-cool-model")
```
"""
def _save_pretrained(self, save_directory):
save_pretrained_keras(self, save_directory)
@classmethod
def _from_pretrained(
cls,
model_id,
revision,
cache_dir,
force_download,
proxies,
resume_download,
local_files_only,
token,
**model_kwargs,
):
"""Here we just call [`from_pretrained_keras`] function so both the mixin and
functional APIs stay in sync.
TODO - Some args above aren't used since we are calling
snapshot_download instead of hf_hub_download.
"""
if is_tf_available():
import tensorflow as tf
else:
raise ImportError("Called a TensorFlow-specific function but could not import it.")
# TODO - Figure out what to do about these config values. Config is not going to be needed to load model
cfg = model_kwargs.pop("config", None)
# Root is either a local filepath matching model_id or a cached snapshot
if not os.path.isdir(model_id):
storage_folder = snapshot_download(
repo_id=model_id,
revision=revision,
cache_dir=cache_dir,
library_name="keras",
library_version=get_tf_version(),
)
else:
storage_folder = model_id
model = tf.keras.models.load_model(storage_folder, **model_kwargs)
# For now, we add a new attribute, config, to store the config loaded from the hub/a local dir.
model.config = cfg
return model