--- base_model: nvidia/Llama-3.1-Nemotron-70B-Reward-HF datasets: - nvidia/HelpSteer2 language: - en license: llama3.1 tags: - nvidia - llama3.1 - reward model - mlx inference: false fine-tuning: false --- # mlx-community/nvidia-Llama-3.1-Nemotron-70B-Reward-HF-AQ41 The Model [mlx-community/nvidia-Llama-3.1-Nemotron-70B-Reward-HF-AQ41](https://huggingface.co/mlx-community/nvidia-Llama-3.1-Nemotron-70B-Reward-HF-AQ41) was converted to MLX format from [nvidia/Llama-3.1-Nemotron-70B-Reward-HF](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward-HF) using mlx-lm version **0.18.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/nvidia-Llama-3.1-Nemotron-70B-Reward-HF-AQ41") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```