--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - twitter-sentiment-analysis metrics: - accuracy - f1 model-index: - name: twitter-sentiment-analysis results: - task: name: Text Classification type: text-classification dataset: name: twitter-sentiment-analysis type: twitter-sentiment-analysis config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8445272428142844 - name: F1 type: f1 value: 0.8445648493057907 --- # twitter-sentiment-analysis This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the twitter-sentiment-analysis dataset. It achieves the following results on the evaluation set: - Loss: 0.3844 - Accuracy: 0.8445 - F1: 0.8446 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2