--- library_name: transformers license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - llama-factory - generated_from_trainer model-index: - name: hp_ablations_mistral_scheduler_cosine_warmup0.15_dcftv1.2 results: [] --- # hp_ablations_mistral_scheduler_cosine_warmup0.15_dcftv1.2 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - total_eval_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.15 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5777 | 0.9976 | 369 | 0.0717 | | 0.4947 | 1.9973 | 738 | 0.0702 | | 0.4132 | 2.9970 | 1107 | 0.0727 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.3.0 - Datasets 3.0.2 - Tokenizers 0.20.3