--- library_name: transformers license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - llama-factory - generated_from_trainer model-index: - name: hp_ablations_grid_mistral_bsz4096_lr2e-6_scheduler-cosine-warmup0.05-minlr5e-7 results: [] --- # hp_ablations_grid_mistral_bsz4096_lr2e-6_scheduler-cosine-warmup0.05-minlr5e-7 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 64 - gradient_accumulation_steps: 8 - total_train_batch_size: 4096 - total_eval_batch_size: 512 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_min_lr - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5488 | 1.0 | 84 | 0.0679 | | 0.4983 | 2.0 | 168 | 0.0636 | | 0.4707 | 3.0 | 252 | 0.0622 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.3.0 - Datasets 3.1.0 - Tokenizers 0.20.3