--- license: cc-by-nc-4.0 tags: - merge - mergekit - lazymergekit base_model: - liminerity/M7-7b - rwitz/experiment26-truthy-iter-0 --- # Zebrafish-7B Zebrafish-7B is my first model using the new merge method called [Model Stock](https://arxiv.org/abs/2403.19522). Zebrafish-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [liminerity/M7-7b](https://huggingface.co/liminerity/M7-7b) * [rwitz/experiment26-truthy-iter-0](https://huggingface.co/rwitz/experiment26-truthy-iter-0) Special thanks to Charles Goddard for the quick implementation! ## 🏆 Evaluation ### Nous | Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench | |---|---:|---:|---:|---:|---:| | [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) [📄](https://gist.github.com/mlabonne/1d33c86824b3a11d2308e36db1ba41c1) | 62.74 | 45.37 | 77.01 | 78.39 | 50.2 | | [**mlabonne/Zebrafish-7B**](https://huggingface.co/mlabonne/Zebrafish-7B) [📄](https://gist.github.com/mlabonne/719d5e106eefbcffb951b65616dcbec4) | **62.41** | **44.92** | **77.18** | **78.25** | **49.28** | | [mlabonne/Beyonder-4x7B-v3](https://huggingface.co/mlabonne/Beyonder-4x7B-v3) [📄](https://gist.github.com/mlabonne/3740020807e559f7057c32e85ce42d92) | 61.91 | 45.85 | 76.67 | 74.98 | 50.12 | | [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) [📄](https://gist.github.com/mlabonne/ad0c665bbe581c8420136c3b52b3c15c) | 60.25 | 46.06 | 76.77 | 70.32 | 47.86 | | [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) [📄](https://gist.github.com/mlabonne/05d358e17dffdf9eee7c2322380c9da6) | 54.81 | 38.5 | 71.64 | 66.82 | 42.29 | ## 🧩 Configuration ```yaml models: - model: mistralai/Mistral-7B-v0.1 - model: liminerity/M7-7b - model: rwitz/experiment26-truthy-iter-0 merge_method: model_stock base_model: mistralai/Mistral-7B-v0.1 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mlabonne/Zebrafish-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```