--- license: apache-2.0 tags: - merge - mergekit --- ![](https://i.imgur.com/FSKtmRc.png) # Marcoro14-7B-slerp This model is a merge of the following models made with [mergekit](https://github.com/cg123/mergekit): * [AIDC-ai-business/Marcoroni-7B-v3](https://huggingface.co/AIDC-ai-business/Marcoroni-7B-v3) * [EmbeddedLLM/Mistral-7B-Merge-14-v0.1](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1) ## 🏆 Evaluation Marcoro14-7B-slerp is the second best-performing 7B LLM on the Open LLM Leaderboard: ![](https://i.imgur.com/5XUuP7g.png) I also evaluated it using Nous' benchmark suite and obtained the following results: | Model |AGIEval|GPT4ALL|TruthfulQA|Bigbench|Average| |-------------------------|------:|------:|---------:|-------:|------:| |Marcoro14-7B-slerp | 44.66| 76.24| 64.15| 45.64| 57.67| |OpenHermes-2.5-Mistral-7B| 43.07| 73.12| 53.04| 40.96| 52.57| |Change | +1.59| +3.12| +11.11| +4.68| +5.1| ### AGIEval | Task |Version| Metric |Value| |Stderr| |------------------------------|------:|--------|----:|---|-----:| |agieval_aqua_rat | 0|acc |26.38|± | 2.77| | | |acc_norm|24.41|± | 2.70| |agieval_logiqa_en | 0|acc |38.25|± | 1.91| | | |acc_norm|39.32|± | 1.92| |agieval_lsat_ar | 0|acc |24.35|± | 2.84| | | |acc_norm|25.22|± | 2.87| |agieval_lsat_lr | 0|acc |50.00|± | 2.22| | | |acc_norm|50.59|± | 2.22| |agieval_lsat_rc | 0|acc |62.83|± | 2.95| | | |acc_norm|62.08|± | 2.96| |agieval_sat_en | 0|acc |79.61|± | 2.81| | | |acc_norm|79.61|± | 2.81| |agieval_sat_en_without_passage| 0|acc |45.15|± | 3.48| | | |acc_norm|45.63|± | 3.48| |agieval_sat_math | 0|acc |33.18|± | 3.18| | | |acc_norm|30.45|± | 3.11| Average: 44.66% ### GPT4ALL | Task |Version| Metric |Value| |Stderr| |-------------|------:|--------|----:|---|-----:| |arc_challenge| 0|acc |63.91|± | 1.40| | | |acc_norm|64.93|± | 1.39| |arc_easy | 0|acc |86.07|± | 0.71| | | |acc_norm|83.75|± | 0.76| |boolq | 1|acc |88.56|± | 0.56| |hellaswag | 0|acc |67.31|± | 0.47| | | |acc_norm|85.28|± | 0.35| |openbookqa | 0|acc |36.40|± | 2.15| | | |acc_norm|48.20|± | 2.24| |piqa | 0|acc |82.59|± | 0.88| | | |acc_norm|84.39|± | 0.85| |winogrande | 0|acc |78.53|± | 1.15| Average: 76.24% ### TruthfulQA | Task |Version|Metric|Value| |Stderr| |-------------|------:|------|----:|---|-----:| |truthfulqa_mc| 1|mc1 |46.88|± | 1.75| | | |mc2 |64.15|± | 1.52| Average: 64.15% ### Bigbench | Task |Version| Metric |Value| |Stderr| |------------------------------------------------|------:|---------------------|----:|---|-----:| |bigbench_causal_judgement | 0|multiple_choice_grade|56.32|± | 3.61| |bigbench_date_understanding | 0|multiple_choice_grade|66.40|± | 2.46| |bigbench_disambiguation_qa | 0|multiple_choice_grade|45.35|± | 3.11| |bigbench_geometric_shapes | 0|multiple_choice_grade|20.33|± | 2.13| | | |exact_str_match | 4.74|± | 1.12| |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|30.00|± | 2.05| |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|21.43|± | 1.55| |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|52.33|± | 2.89| |bigbench_movie_recommendation | 0|multiple_choice_grade|39.20|± | 2.19| |bigbench_navigate | 0|multiple_choice_grade|53.90|± | 1.58| |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|72.15|± | 1.00| |bigbench_ruin_names | 0|multiple_choice_grade|52.46|± | 2.36| |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|25.75|± | 1.38| |bigbench_snarks | 0|multiple_choice_grade|72.38|± | 3.33| |bigbench_sports_understanding | 0|multiple_choice_grade|73.63|± | 1.40| |bigbench_temporal_sequences | 0|multiple_choice_grade|45.70|± | 1.58| |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|23.44|± | 1.20| |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|18.51|± | 0.93| |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|52.33|± | 2.89| Average: 45.64% Average score: 57.67% ## 🧩 Configuration ```yaml slices: - sources: - model: AIDC-ai-business/Marcoroni-7B-v3 layer_range: [0, 32] - model: EmbeddedLLM/Mistral-7B-Merge-14-v0.1 layer_range: [0, 32] merge_method: slerp base_model: AIDC-ai-business/Marcoroni-7B-v3 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mlabonne/Marcoro14-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` Output: > A large language model is a type of artificial intelligence (AI) system that has been trained on vast amounts of text data. It's designed to understand and generate human-like language, making predictions on what words or phrases might come next in a sentence or document. These models use complex algorithms and neural network architectures to learn from the data and improve their performance over time. Some well-known large language models include GPT-3 from OpenAI and BERT from Google.