--- license: apache-2.0 language: - en dataset: - chargoddard/Open-Platypus-Chat tags: - axolotl base_model: ai21labs/Jamba-v0.1 --- ![image/webp](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/efmF8RtLLeKgQ9OwPqfD8.webp) # Jambatypus-v0.1 This model is a fine-tuned version of [ai21labs/Jamba-v0.1](https://huggingface.co/ai21labs/Jamba-v0.1) on the [chargoddard/Open-Platypus-Chat](https://huggingface.co/datasets/chargoddard/Open-Platypus-Chat) dataset. It has been trained on 2xA100 80 GB using my [LazyAxolotl - Jamba](https://colab.research.google.com/drive/1alsgwZFvLPPAwIgkAxeMKHQSJYfW7DeZ?usp=sharing) notebook. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: ai21labs/Jamba-v0.1 trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: chargoddard/Open-Platypus-Chat type: sharegpt chat_template: chatml dataset_prepared_path: val_set_size: 0.01 output_dir: ./out sequence_len: 4096 sample_packing: true pad_to_sequence_len: true eval_sample_packing: false use_wandb: true wandb_project: axolotl wandb_entity: wandb_watch: wandb_name: Jambatypus-v0.1 wandb_log_model: adapter: qlora lora_r: 16 lora_alpha: 32 lora_dropout: 0.05 lora_target_linear: true low_cpu_mem_usage: true gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 1 optimizer: adamw_bnb_8bit adam_beta2: 0.95 adam_epsilon: 0.00001 max_grad_norm: 1.0 lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 4 save_total_limit: 2 debug: deepspeed: weight_decay: 0.0 special_tokens: ```

### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6274 | 0.01 | 1 | 1.0298 | | 0.44 | 0.25 | 42 | 0.9770 | | 0.4406 | 0.5 | 84 | 0.9653 | | 0.4445 | 0.75 | 126 | 0.9645 | | 0.4609 | 1.0 | 168 | 0.9641 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.18.0 - Tokenizers 0.15.0