--- license: other license_name: tongyi-qianwen license_link: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE language: - en pipeline_tag: text-generation library_name: transformers tags: - mergekit - merge - lazymergekit base_model: - Qwen/Qwen2.5-72B-Instruct --- # BigQwen2.5-125B-Instruct ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/98GiKtmH1AtHHbIbOUH4Y.jpeg) BigQwen2.5-125B-Instruct is a [Qwen/Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct) self-merge made with [MergeKit](https://github.com/arcee-ai/mergekit/tree/main). It applies the [mlabonne/Meta-Llama-3-120B-Instruct](https://huggingface.co/mlabonne/Meta-Llama-3-120B-Instruct/) recipe. I made it due to popular demand but I haven't tested it so use it at your own risk. ¯\\\_(ツ)_/¯ ## 🔍 Applications It might be good for creative writing tasks. I recommend a context length of 32k but you can go up to 131,072 tokens in theory. ## 🏆 Evaluation I think it's too big for the Open LLM Leaderboard, unfortunately. Here's some feedback from users (thanks a lot!): ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/OhnwtXgIMIcr2pQqggXhU.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/bj0e-_n9GehxFxWdKwQ1C.png) ## 🧩 Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - layer_range: [0, 20] model: Qwen/Qwen2.5-72B-Instruct - sources: - layer_range: [10, 30] model: Qwen/Qwen2.5-72B-Instruct - sources: - layer_range: [20, 40] model: Qwen/Qwen2.5-72B-Instruct - sources: - layer_range: [30, 50] model: Qwen/Qwen2.5-72B-Instruct - sources: - layer_range: [40, 60] model: Qwen/Qwen2.5-72B-Instruct - sources: - layer_range: [50, 70] model: Qwen/Qwen2.5-72B-Instruct - sources: - layer_range: [60, 80] model: Qwen/Qwen2.5-72B-Instruct merge_method: passthrough dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mlabonne/BigQwen2.5-125B-Instruct" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```