--- language: - en license: mit datasets: - glue - facebook/anli pipeline_tag: zero-shot-classification base_model: thenlper/gte-large model-index: - name: gte-large-mnli-anli results: [] --- # gte-large-mnli-anli This model is a fine-tuned version of [thenlper/gte-large](https://huggingface.co/thenlper/gte-large) on the glue and ANLI dataset. ## Model description [Towards General Text Embeddings with Multi-stage Contrastive Learning](https://arxiv.org/abs/2308.03281). Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, Meishan Zhang, arXiv 2023 ## How to use the model ### With the zero-shot classification pipeline The model can be loaded with the `zero-shot-classification` pipeline like so: ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="mjwong/gte-large-mnli-anli") ``` You can then use this pipeline to classify sequences into any of the class names you specify. ```python sequence_to_classify = "one day I will see the world" candidate_labels = ['travel', 'cooking', 'dancing'] classifier(sequence_to_classify, candidate_labels) ``` If more than one candidate label can be correct, pass `multi_class=True` to calculate each class independently: ```python candidate_labels = ['travel', 'cooking', 'dancing', 'exploration'] classifier(sequence_to_classify, candidate_labels, multi_class=True) ``` ### With manual PyTorch The model can also be applied on NLI tasks like so: ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification # device = "cuda:0" or "cpu" device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model_name = "mjwong/gte-large-mnli-anli" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) premise = "But I thought you'd sworn off coffee." hypothesis = "I thought that you vowed to drink more coffee." input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt") output = model(input["input_ids"].to(device)) prediction = torch.softmax(output["logits"][0], -1).tolist() label_names = ["entailment", "neutral", "contradiction"] prediction = {name: round(float(pred) * 100, 2) for pred, name in zip(prediction, label_names)} print(prediction) ``` ### Eval results The model was also evaluated using the dev sets for MultiNLI and test sets for ANLI. The metric used is accuracy. |Datasets|mnli_dev_m|mnli_dev_mm|anli_test_r1|anli_test_r2|anli_test_r3| | :---: | :---: | :---: | :---: | :---: | :---: | |[gte-large-mnli-anli](https://huggingface.co/mjwong/gte-large-mnli-anli)|0.834|0.835|0.606|0.480|0.459| ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 ### Framework versions - Transformers 4.28.1 - Pytorch 1.12.1+cu116 - Datasets 2.11.0 - Tokenizers 0.12.1