model: names: - sam sam: checkpoint_name: facebook/sam-vit-base image_norm: imagenet data_types: - semantic_segmentation_img train_transforms: - random_horizontal_flip val_transforms: [] img_transforms: - resize_to_square gt_transforms: - resize_gt_to_square max_img_num_per_col: 1 frozen_layers: - mask_decoder.iou_prediction_head - prompt_encoder num_mask_tokens: 1 ignore_label: 255 data: image: missing_value_strategy: zero text: normalize_text: false categorical: minimum_cat_count: 100 maximum_num_cat: 20 convert_to_text: true numerical: convert_to_text: false scaler_with_mean: true scaler_with_std: true document: missing_value_strategy: zero label: numerical_label_preprocessing: standardscaler pos_label: null column_features_pooling_mode: concat mixup: turn_on: false mixup_alpha: 0.8 cutmix_alpha: 1.0 cutmix_minmax: null prob: 1.0 switch_prob: 0.5 mode: batch turn_off_epoch: 5 label_smoothing: 0.1 templates: turn_on: false num_templates: 30 template_length: 2048 preset_templates: - super_glue - rte custom_templates: null optimization: optim_type: adamw learning_rate: 0.0001 weight_decay: 0.0001 lr_choice: single_stage lr_decay: 0 lr_schedule: polynomial_decay max_epochs: 30 max_steps: -1 warmup_steps: 0.0 end_lr: 0 lr_mult: 1 patience: 10 val_check_interval: 1.0 check_val_every_n_epoch: 1 skip_final_val: false gradient_clip_val: 1 gradient_clip_algorithm: norm track_grad_norm: -1 log_every_n_steps: 10 top_k: 3 top_k_average_method: best efficient_finetune: lora lora: module_filter: - .*vision_encoder.*attn filter: - q - v r: 3 alpha: 32 loss_function: structure_loss focal_loss: alpha: null gamma: 2.0 reduction: mean mask2former_loss: loss_cross_entropy_weight: 10.0 loss_mask_weight: 5.0 loss_dice_weight: 5.0 extra_trainable_params: - .*mask_decoder env: num_gpus: 1 num_nodes: 1 batch_size: 4 per_gpu_batch_size: 1 eval_batch_size_ratio: 1 per_gpu_batch_size_evaluation: null precision: 16-mixed num_workers: 4 num_workers_evaluation: 2 accelerator: auto fast_dev_run: false deterministic: false auto_select_gpus: false strategy: auto deepspeed_allgather_size: 1000000000.0 deepspeed_allreduce_size: 1000000000.0 compile: turn_on: false mode: default dynamic: true backend: inductor