End of training
Browse files
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: openai/whisper-small
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- balbus-classifier
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: miosipof/whisper-tiny-ft-balbus-sep28k-v1.1
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Audio Classification
|
16 |
+
type: audio-classification
|
17 |
+
dataset:
|
18 |
+
name: Apple dataset
|
19 |
+
type: balbus-classifier
|
20 |
+
config: default
|
21 |
+
split: train
|
22 |
+
args: default
|
23 |
+
metrics:
|
24 |
+
- name: Accuracy
|
25 |
+
type: accuracy
|
26 |
+
value: 0.7718583516139141
|
27 |
+
---
|
28 |
+
|
29 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
30 |
+
should probably proofread and complete it, then remove this comment. -->
|
31 |
+
|
32 |
+
# miosipof/whisper-tiny-ft-balbus-sep28k-v1.1
|
33 |
+
|
34 |
+
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Apple dataset dataset.
|
35 |
+
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.4870
|
37 |
+
- Accuracy: 0.7719
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 1e-06
|
57 |
+
- train_batch_size: 16
|
58 |
+
- eval_batch_size: 8
|
59 |
+
- seed: 42
|
60 |
+
- gradient_accumulation_steps: 2
|
61 |
+
- total_train_batch_size: 32
|
62 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- lr_scheduler_warmup_ratio: 0.5
|
65 |
+
- training_steps: 1000
|
66 |
+
- mixed_precision_training: Native AMP
|
67 |
+
|
68 |
+
### Training results
|
69 |
+
|
70 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
71 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|
|
72 |
+
| 0.6991 | 0.1253 | 100 | 0.6929 | 0.4616 |
|
73 |
+
| 0.686 | 0.2506 | 200 | 0.6816 | 0.5577 |
|
74 |
+
| 0.6776 | 0.3759 | 300 | 0.6726 | 0.5631 |
|
75 |
+
| 0.6591 | 0.5013 | 400 | 0.6472 | 0.6244 |
|
76 |
+
| 0.6317 | 0.6266 | 500 | 0.6115 | 0.6802 |
|
77 |
+
| 0.5836 | 0.7519 | 600 | 0.5672 | 0.7104 |
|
78 |
+
| 0.5415 | 0.8772 | 700 | 0.5192 | 0.7499 |
|
79 |
+
| 0.4856 | 1.0025 | 800 | 0.4999 | 0.7667 |
|
80 |
+
| 0.4886 | 1.1278 | 900 | 0.4894 | 0.7715 |
|
81 |
+
| 0.4727 | 1.2531 | 1000 | 0.4870 | 0.7719 |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.48.0
|
87 |
+
- Pytorch 2.2.0
|
88 |
+
- Datasets 3.2.0
|
89 |
+
- Tokenizers 0.21.0
|