miosipof commited on
Commit
ae79fd6
·
verified ·
1 Parent(s): f929ccb

End of training

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: openai/whisper-small
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - balbus-classifier
9
+ metrics:
10
+ - accuracy
11
+ model-index:
12
+ - name: miosipof/whisper-tiny-ft-balbus-sep28k-v1.1
13
+ results:
14
+ - task:
15
+ name: Audio Classification
16
+ type: audio-classification
17
+ dataset:
18
+ name: Apple dataset
19
+ type: balbus-classifier
20
+ config: default
21
+ split: train
22
+ args: default
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.7718583516139141
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # miosipof/whisper-tiny-ft-balbus-sep28k-v1.1
33
+
34
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Apple dataset dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 0.4870
37
+ - Accuracy: 0.7719
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 1e-06
57
+ - train_batch_size: 16
58
+ - eval_batch_size: 8
59
+ - seed: 42
60
+ - gradient_accumulation_steps: 2
61
+ - total_train_batch_size: 32
62
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
63
+ - lr_scheduler_type: linear
64
+ - lr_scheduler_warmup_ratio: 0.5
65
+ - training_steps: 1000
66
+ - mixed_precision_training: Native AMP
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
71
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
72
+ | 0.6991 | 0.1253 | 100 | 0.6929 | 0.4616 |
73
+ | 0.686 | 0.2506 | 200 | 0.6816 | 0.5577 |
74
+ | 0.6776 | 0.3759 | 300 | 0.6726 | 0.5631 |
75
+ | 0.6591 | 0.5013 | 400 | 0.6472 | 0.6244 |
76
+ | 0.6317 | 0.6266 | 500 | 0.6115 | 0.6802 |
77
+ | 0.5836 | 0.7519 | 600 | 0.5672 | 0.7104 |
78
+ | 0.5415 | 0.8772 | 700 | 0.5192 | 0.7499 |
79
+ | 0.4856 | 1.0025 | 800 | 0.4999 | 0.7667 |
80
+ | 0.4886 | 1.1278 | 900 | 0.4894 | 0.7715 |
81
+ | 0.4727 | 1.2531 | 1000 | 0.4870 | 0.7719 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.48.0
87
+ - Pytorch 2.2.0
88
+ - Datasets 3.2.0
89
+ - Tokenizers 0.21.0