--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-IEMOCAP_3 results: [] --- # videomae-base-finetuned-IEMOCAP_3 This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3701 - Accuracy: 0.3179 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 4370 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3648 | 0.1 | 438 | 1.3661 | 0.3746 | | 1.3188 | 1.1 | 876 | 1.3436 | 0.3215 | | 1.2826 | 2.1 | 1314 | 1.3651 | 0.3215 | | 1.2141 | 3.1 | 1752 | 1.3170 | 0.3759 | | 1.2555 | 4.1 | 2190 | 1.3018 | 0.4053 | | 1.2422 | 5.1 | 2628 | 1.3036 | 0.3565 | | 1.2776 | 6.1 | 3066 | 1.2650 | 0.3921 | | 1.2074 | 7.1 | 3504 | 1.2655 | 0.3971 | | 1.2354 | 8.1 | 3942 | 1.2542 | 0.3952 | | 1.0865 | 9.1 | 4370 | 1.2498 | 0.4078 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3